Abstract
Background:
Concomitant quinolone resistance in extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae is a crucial problem in the clinical management of infections. In foreign countries, the fluoroquinolone acetylating aminoglycoside-(6)-N-acetyltransferase (aac[6′]-Ib-cr) gene, a novel plasmid-mediated quinolone resistance determinant has been reported to occur in conjunction with qnr. We aim to investigate the prevalence and characteristics of concomitant aac(6′)-Ib-cr and qnr expression in ESBL-producing Escherichia coli and Klebsiella pneumoniae in Korea.
Methods:
Between December 2007 and April 2008, we collected 60 and 69 clonally unrelated non-repetitive clinical isolates of ESBL-producing E. coli and K. pneumoniae, respectively. We studied the expressions of 11 types of ESBL-encoding genes, 4 types of 16s rRNA methylase genes; rmtA, rmtB, rmtC and armA, 3 types of qnr genes; qnrA, qnrB, qnrS and aac(6′)-Ib. The presence of aac(6′)-Ib-cr variants was detected by sequencing. The involvement of integrons was studied using multiplex PCR and sequencing of gene-cassette arrays. Conjugation experiments were performed to confirm plasmid-mediated resistance and the relationships among coharbored genes.
Results:
We observed a high prevalence of the cr variant (61.1%) of aac(6′)-Ib, and the prevalence of this variant in qnr and aac(6′)-Ib-coharboring isolates (67.4%) was higher than in qnr-negative isolates (51.7%). The high prevalence of the cr variant was significantly related to the high minimum inhibitory concentrations (MICs) of ciprofloxacin, tobramycin, and amikacin and indicated the statistically significant roles of qnrB, qnrS, rmtA, and rmtB in quinolone and aminoglycoside resistance.
REFERENCES
1.Podschun R., Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods and pathogenicity factors. Clin Microbiol Rev. 1998. 11:589–603.
2.Garau J., Xercavins M., Rodríguez-Carballeira M., Gómez-Vera JR., Coll I., Vidal D, et al. Emergence and dissemination of quinolone-resistant Escherichia coli in the community. Antimicrob Agents Chemother. 1999. 43:2736–41.
3.Lautenbach E., Strom BL., Bilker WB., Patel JB., Edelstein PH., Fishman NO. Epidemiological investigation of fluoroquinolone resistance in infections due to extended-spectrum β-lactamase-producing Escherichia Coli and Klebsiella pneumoniae. Clin Infect Dis. 2001. 33:1288–94.
4.Ling TK., Xiong J., Yu Y., Lee CC., Ye H., Hawkey PM. Multicenter antimicrobial susceptibility survey of gram-negative bacteria isolated from patients with community-acquired infections in the People's Republic of China. Antimicrob Agents Chemother. 2006. 50:374–8.
5.Jacoby GA., Chow N., Waites KB. Prevalence of plasmid-mediated quinolone resistance. Antimicrob Agents Chemother. 2003. 47:559–62.
6.Martínez-Martínez L., Pascual A., Jacoby GA. Quinolone resistance from a transferable plasmid. Lancet. 1998. 351:797–9.
8.Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing: seventeenth informational supplement M100-S17. Wayne, PA: CLSI. 2007.
9.Kang JH., Bae IK., Kwon SB., Jeong SH., Lee JW., Lee WG. Prevalence of Ambler Class A extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates in Korea. Korean J Clin Microbiol. 2005. 8:17–25. (강지혜, 배일권, 권수봉, 정석훈, 이종욱, 이위교등. Ambler Class A extended-spectrum β-lactamase 생성 Escherichia coli 와 Klebsiella pneumoniae 의 국내 분리 현황. 대한임상미생물학회지 2005;8:17-25.).
10.Cattoir V., Weill FX., Poirel L., Fabre L., Soussy CJ., Nordmann P. Prevalence of qnr genes in Salmonella in France. J Antimicrob Chemother. 2007. 59:751–4.
11.Bogaerts P., Galimand M., Bauraing C., Deplano A., Vanhoof R., De Mendonca R, et al. Emergence of ArmA and RmtB aminoglycoside resistance 16S rRNA methylases in Belgium. J Antimicrob Chemother. 2007. 59:459–64.
12.Park YJ., Lee S., Yu JK., Woo GJ., Lee K., Arakawa Y. Co-production of 16S rRNA methylases and extended-spectrum β-lactamases in AmpC-producing Enterobacter cloacae, Citrobacter freundii and Serratia marcescens in Korea. J Antimicrob Chemother. 2006. 58:907–8.
13.Fihman V., Lartigue MF., Jacquier H., Meunier F., Schnepf N., Raskine L, et al. Appearance of aac(6′)-Ib-cr gene among extended-spectrum β-lactamase-producing Enterobacteriaceae in a French hospital. J Infect. 2008. 56:454–9.
14.Dillon B., Thomas L., Mohmand G., Zelynski A., Iredell J. Multiplex PCR for screening of integrons in bacterial lysates. J Microbiol Methods. 2005. 62:221–32.
15.White PA., McIver CJ., Rawlinson WD. Integrons and gene cassettes in the enterobacteriaceae. Antimicrob Agents Chemother. 2001. 45:2658–61.
16.Jeong JY., Yoon HJ., Kim ES., Lee Y., Choi SH., Kim NJ, et al. Detection of qnr in clinical isolates of Escherichia coli from Korea. Antimicrob Agents Chemother. 2005. 49:2522–4.
17.Kim MH., Sung JY., Park JW., Kwon GC., Koo SH. Coproduction of qnrB and armA from extended-spectrum β-lactamase-producing Klebsiella pneumoniae. Korean J Lab Med. 2007. 27:428–36. (김문희, 성지연, 박종우, 권계철, 구선회. Extended-spectrum β-lactamase 를생성하는 Klebsiella pneumoniae 에서의 qnrB 와 armA 유전자의동시생성.대한진단검사의학회지 2007;27:428-36.).
18.Versalovic J., Koeuth T., Lupski JR. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 1991. 19:6823–31.
19.Poirel L., Pitout JD., Calvo L., Rodriguez-Martinez JM., Church D., Nordmann P. In vivo selection of fluoroquinolone-resistant Escherichia coli isolates expressing plasmid-mediated quinolone resistance and expanded-spectrum β-lactamase. Antimicrob Agents Chemother. 2006. 50:1525–7.
20.Robicsek A., Jacoby GA., Hooper DC. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis. 2006. 6:629–40.
21.Jiang Y., Zhou Z., Qian Y., Wei Z., Yu Y., Hu S, et al. Plasmid-mediated quinolone resistance determinants qnr and aac(6′)-Ib-cr in extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in China. J Antimicrob Chemother. 2008. 61:1003–6.
22.Park CH., Robicsek A., Jacoby GA., Sahm D., Hooper DC. Prevalence in the United States of aac(6′)-Ib-cr encoding a ciprofloxacin-modifying enzyme. Antimicrob Agents Chemother. 2006. 50:3953–5.
23.Szabó D., Kocsis B., Rókusz L., Szentandrássy J., Katona K., Kristóf K, et al. First detection of plasmid-mediated, quinolone resistance determinants qnrA, qnrB, qnrS and aac(6′)-Ib-cr in extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae in Budapest, Hungary. J Antimicrob Chemother. 2008. 62:630–2.
24.Robicsek A., Strahilevitz J., Jacoby GA., Macielag M., Abbanat D., Park CH, et al. Fluoroquinolone-modifying enzyme: a n adaptation of a common aminoglycoside acetyltransferase. Nat Med. 2006. 12:83–8.
25.Robicsek A., Strahilevitz J., Sahm DF., Jacoby GA., Hooper DC. qnr prevalence in ceftazidime-resistant Enterobacteriaceae isolates from the United States. Antimicrob Agents Chemother. 2006. 50:2872–4.
26.Fluit AC., Schmitz FJ. Class 1 integrons, gene cassettes, mobility, and epidemiology. Eur J Clin Microbiol Infect Dis. 1999. 18:761–70.
27.Collis CM., Hall RM. Expression of antibiotic resistance genes in the integrated cassettes of integrons. Antimicrob Agents Chemother. 1995. 39:155–62.
28.Park YJ., Yu JK., Lee S., Oh EJ., Woo GJ. Prevalence and diversity of qnr alleles in AmpC-producing Enterobacter cloacae, Enterobacter aerogenes, Citrobacter freundii and Serratia marcescens: a multicentre study from Korea. J Antimicrob Chemother. 2007. 60:868–71.
Table 1.
Table 2.
Genes | Escherichia coli N=60 (%) | Klebsiella pneumoniae N=69 (%) | Total N=129 | P value∗ |
---|---|---|---|---|
blaTEM | 41 (68.3) | 33 (47.8) | 74 (57.0) | 0.03 |
blaSHV | 5 (8.3) | 65 (94.2) | 70 (54.0) | ≤0.0001 |
blaCTX-M-1 | 34 (56.7) | 11 (15.9) | 45 (35.0) | ≤0.0001 |
blaCTX-M-2 | 2 (3.3) | 11 (15.9) | 13 (10.0) | 0.02 |
blaCTX-M-3 | 18 (30.0) | 12 (17.4) | 30 (23.0) | 0.1384 |
blaCTX-M-8 | 6 (10.0) | 4 (5.8) | 10 (8.0) | 0.5127 |
blaCTX-M-9 | 34 (56.7) | 8 (11.6) | 42 (33.0) | ≤0.0001 |
blaGES | 0 (0) | 5 (7.2) | 5 (4.0) | 0.0607 |
blaVEB | 0 (0) | 1 (1.4) | 1 (1.0) | 1 |
rmtA | 4 (6.7) | 7 (10.1) | 11 (9.0) | 0.5424 |
rmtB | 37 (61.7) | 7 (10.1) | 44 (34.0) | ≤0.0001 |
armA | 14 (23.3) | 46 (66.7) | 60 (47.0) | ≤0.0001 |
aac(6′)-Ib | 39 (65.0) | 33 (47.8) | 72 (55.8) | 0.0748 |
aac(6′)-Ib-cr† | 25/39 (64.1) | 19/33 (57.6) | 44 (61.1) | |
wild-type† | 14/39 (35.9) | 14/33 (42.4) | 28 (38.9) | |
qnrA | 0 (0) | 1 (1.4) | 1 (1.0) | 1 |
qnrB | 1 (1.7) | 49 (71.0) | 50 (39.0) | ≤0.0001 |
qnrS | 24 (40.0) | 5 (7.2) | 29 (22.0) | ≤0.0001 |
Table 3.
Table 4.
Type of cassette array | Sequence of cassette | Size (kb) | Isolates | |
---|---|---|---|---|
Escherichia coli | Klebsiella pneumoniae | |||
1 | dfr17-aadA5 | 1.8 | 5 | 0 |
2 | aadA2 | 1.1 | 0 | 12 |
3 | aadB-aadA2 | 1.6 | 0 | 1 |
4 | aac(6′)-Ib-cm1a1 | 2.5 | 1∗ | 0 |
5 | aac(6′)-Ib-blaOXA4-aadA2 | 3.0 | 0 | 1 |
6 | aadA6-OfrD | 1.2 | 0 | 1 |
Total | 5 | 15 |
Table 5.
Table 6.
N | NOR | CIP | TOB | GEN | AMK | ||
---|---|---|---|---|---|---|---|
qnrB | Positive | 21 | 53.4±55.3 | 40.5±51.9 | 136±190 | ||
Negative | 22 | 11.5±5.6 | 15.5±26.6 | 14.2±21.3 | |||
P value∗ | ≤0.001 | 0.0044 | ≤0.001 | ||||
qnrS | Positive | 22 | 14.8±26.8 | 11.6±18 | |||
Negative | 21 | 41.2±51.4 | 138.6±188.5 | ||||
P value∗ | 0.0054 | ≤0.001 | |||||
rmtA | Positive | 4 | 6±2.3 | 2.1±2.0 | 9.2±7.8 | 9.2±7.8 | 19.5±29.7 |
Negative | 39 | 41.8±55.7 | 7±9.7 | 34.9±45.8 | 30±44.4 | 81.0±153.3 | |
P value∗ | 0.0002 | 0.025 | 0.0139 | 0.0153 | 0.0199 | ||
rmtB | Positive | 14 | 10±6.2 | 14.7±22.4 | |||
Negative | 29 | 42.5±50.2 | 102.2±170.2 | ||||
P value∗ | ≤0.001 | ≤0.001 | |||||
cr-variant | Positive | 29 | 5.2±7.7 | 42.2±51.6 | 97.4±175.6 | ||
Negative | 14 | 9±12.5 | 12.9±5.2 | 30.5±30.2 | |||
P value∗ | 0.0324 | ≤0.001 | ≤0.001 |
Table 7.
N | NOR | CIP | TOB | GEN | AMK | ||
---|---|---|---|---|---|---|---|
qnrB | Positive | 16 | 67±63.0 | 6.0±10.0 | 65.1±58.9 | 50.1±56.3 | 161.5±212.3 |
Negative | 13 | 7±1.8 | 3.5±1.7 | 11.7±5.5 | 10.2±7.1 | 12.0±17.3 | |
P value∗ | ≤0.001 | ≤0.001 | ≤0.001 | ≤0.001 | ≤0.001 | ||
qnrS | Positive | 13 | 6.6±1.9 | 6.6±10.0 | 65.1±58.9 | 161.5±212.2 | |
Negative | 16 | 67.2±62.5 | 3.5±1.1 | 11.7±5.5 | 12±17.3 | ||
P value∗ | ≤0.001 | ≤0.001 | ≤0.001 | ≤0.001 | |||
rmtA | Positive | 3 | 7±7.9 | ||||
Negative | 26 | 36.2±48.6 | |||||
P value∗ | 0.0526 | ||||||
rmtB | Positive | 8 | 9.8±6.2 | 7.1±6.4 | |||
Negative | 21 | 53.0±55.6 | 127.5±194.5 | ||||
P value∗ | ≤0.001 | ≤0.001 |