Journal List > Korean J Lab Med > v.29(1) > 1011534

Song, Lee, Koh, Ha, Jeong, Bae, and Jeong: Antibiotic Resistance Mechanisms of Escherichia coli Isolates from Urinary Specimens

Abstract

Background

This study was designed to characterize urinary isolates of Escherichia coli that produce extended-spectrum β-lactamases (ESBLs) and to determine the prevalence of other antimicrobial resistance genes.

Methods

A total of 264 non-duplicate clinical isolates of E. coli were recovered from urine specimens in a tertiary-care hospital in Busan in 2005. Antimicrobial susceptibility was determined by disk diffusion and agar dilution methods, ESBL production was confirmed using the double-disk synergy (DDS) test, and antimicrobial resistance genes were detected by direct sequencing of PCR amplification products. E. coli isolates were classified into four phylogenetic biotypes according to the presence of chuA, yjaA, and TSPE4.

Results

DDS testing detected ESBLs in 27 (10.2%) of the 264 isolates. The most common type of ESBL was CTX-M-15 (N=14), followed by CTX-M-3 (N=8) and CTX-M-14 (N=6). All of the ESBL-producing isolates were resistant to ciprofloxacin. PCR experiments detected genes encoding DHA-1 and CMY-10 AmpC β-lactamases in one and two isolates, respectively. Also isolated were 5 isolates harboring 16S rRNA methylases, 2 isolates harboring Qnr, and 19 isolates harboring AAC(6′)-Ib-cr. Most ESBL-producing isolates clustered within phylogenetic groups B2 (N=14) and D (N=7).

Conclusion

CTX-M enzymes were the dominant type of ESBLs in urinary isolates of E. coli, and ESBL-producing isolates frequently contained other antimicrobial resistance genes. More than half of the urinary E. coli isolates harboring CTX-M enzymes were within the phylogenetic group B2.

REFERENCES

1.Piatti G., Mannini A., Balistreri M., Schito AM. Virulence factors in urinary Escherichia coli strains: phylogenetic background and quinolone and fluoroquinolone resistance. J Clin Microbiol. 2008. 46:480–7.
2.Bonnet R. Growing group of extended-spectrum β-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother. 2004. 48:1–14.
crossref
3.Kim J., Lim YM., Jeong YS., Seol SY. Occurrence of CTX-M-3, CTX-M-15, CTX-M-14, and CTX-M-9 extended-spectrum β-lactamases in Enterobacteriaceae clinical isolates in Korea. Antimicrob Agents Chemother. 2005. 49:1572–5.
4.Rossolini GM., D'Andrea MM., Mugnaioli C. The spread of CTX-M-type extended-spectrum β-lactamases. Clin Microbiol Infect. 2008. 14(S):33–41.
crossref
5.Bae IK., Lee YN., Jeong SH., Lee K., Yong D., Lee J, et al. Emergence of CTX-M-12, PER-1 and OXA-30 β-lactamase-producing Klebsiella pneumoniae. Korean J Clin Microbiol. 2006. 9:102–9. (배일권, 이유내, 정석훈, 이경원, 용동은, 이종욱 등. CTX-M-12, PER-1 및 OXA-30 β- Lactamase 생성 Klebsiella pneumoniae의 출현. 대한임상미생물학회지 2006;9: 102-9.).
6.Philippon A., Arlet G., Jacoby GA. Plasmid-determined AmpC-type β-lactamases. Antimicrob Agents Chemother. 2002. 46:1–11.
crossref
7.Lee K., Lee M., Shin JH., Lee MH., Kang SH., Park AJ, et al. Prevalence of plasmid-mediated AmpC β-lactamases in Escherichia coli and Klebsiella pneumoniae in Korea. Microb Drug Resist. 2006. 12:44–9.
8.Hooper DC. Mechanisms of fluoroquinolone resistance. Drug Resist Updat. 1999. 2:38–55.
crossref
9.Herzer PJ., Inouye S., Inouye M., Whittam TS. Phylogenetic distribution of branched RNA-linked multicopy single-stranded DNA among natural isolates of Escherichia coli. J Bacteriol. 1990. 172:6175–81.
10.Jeong SH., Bae IK., Lee JH., Sohn SG., Kang GH., Jeon GJ, et al. Molecular characterization of extended-spectrum beta-lactamases produced by clinical isolates of Klebsiella pneumoniae and Escherichia coli from a Korean nationwide survey. J Clin Microbiol. 2004. 42:2902–6.
11.Jeong JY., Yoon HJ., Kim ES., Lee Y., Choi SH., Kim NJ, et al. Detection of qnr in clinical isolates of Escherichia coli from Korea. Antimicrob Agents Chemother. 2005. 49:2522–4.
12.Jeong SH., Bae IK., Kwon SB., Lee JH., Jung HI., Song JS, et al. Investigation of extended-spectrum β-lactamases produced by clinical isolates of Klebsiella pneumoniae and Escherichia coli in Korea. Lett Appl Microbiol. 2004. 39:41–7.
13.Magnet S., Blanchard JS. Molecular insights into aminoglycoside action and resistance. Chem Rev. 2005. 105:477–98.
crossref
14.Doi Y., Arakawa Y. 16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides. Clin Infect Dis. 2007. 45:88–94.
crossref
15.Baudry PJ., Nichol K., DeCorby M., Mataseje L., Mulvey MR., Hoban DJ, et al. Comparison of antimicrobial resistance profiles among extended-spectrum β-lactamase-producing and acquired AmpC β-lactamase-producing Escherichia coli isolates from Canadian intensive care units. Antimicrob Agents Chemother. 2008. 52:1846–9.
16.Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; seventeenth informational supplement: Approved Standard M100-S17. Wayne, PA: Clinical Laboratory Standards Institute;2007.
17.Sambrook J, Fritsch EF, editors. Molecular cloning: a laboratory manual. 2nd ed.NY: Cold Spring Harbor Laboratory Press;1989.
18.Ryoo NH., Kim EC., Hong SG., Park YJ., Lee K., Bae IK, et al. Dissemination of SHV-12 and CTX-M-type extended-spectrum beta-lactamases among clinical isolates of Escherichia coli and Klebsiella pneumoniae and emergence of GES-3 in Korea. J Antimicrob Chemother. 2005. 56:698–702.
19.Song W., Kim JS., Kim HS., Yong D., Jeong SH., Park MJ, et al. Increasing trend in the prevalence of plasmid-mediated AmpC beta-lactamases in Enterobacteriaceae lacking chromosomal ampC gene at a Korean university hospital from 2002 to 2004. Diagn Microbiol Infect Dis. 2006. 55:219–24.
20.Cattoir V., Poirel L., Rotimi V., Soussy CJ., Nordmann P. Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J Antimicrob Chemother. 2007. 60:394–7.
21.Fihman V., Lartigue MF., Jacquier H., Meunier F., Schnepf N., Raskine L, et al. Appearance of aac(6′)-Ib-cr gene among extended-spectrum beta-lactamase-producing Enterobacteriaceae in a French hospital. J Infect. 2008. 56:454–9.
22.Fritsche TR., Castanheira M., Miller GH., Jones RN., Armstrong ES. Detection of methyltransferases conferring high-level resistance to aminoglycosides in Enterobacteriaceae from Europe, North America, and Latin America. Antimicrob Agents Chemother. 2008. 52:1843–5.
23.Clermont O., Bonacorsi S., Bingen E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol. 2000. 66:4555–8.
24.Akram M., Shahid M., Khan AU. Etiology and antibiotic resistance patterns of community-acquired urinary tract infections in J N M C Hospital Aligarh, India. Ann Clin Microbiol Antimicrob. 2007. 6:4–10.
crossref
25.Mazzei T., Cassetta MI., Fallani S., Arrigucci S., Novelli A. Pharmacokinetic and pharmacodynamic aspects of antimicrobial agents for the treatment of uncomplicated urinary tract infections. Int J Antimicrob Agents. 2006. 28(S):S35–41.
crossref
26.Ko CS., Sung JY., Koo SH., Kwon GC., Shin SY., Park JW. Prevalence of Extended-Spectrum beta-lactamases in Escherichia coli and Klebsiella pneumoniae from Daejeon. Korean J Lab Med. 2007. 27:344–50. (고지선, 성지연, 구선회, 권계철, 신소연, 박종우. 대전지역에서 분리된 Escherichia coli와 Klebsiella pneumoniae의 Extended-spectrum β-lactamase 생성현황. 대한진단검사의학회지 2007;27: 344-50.).
27.Hong SG., Kim S., Jeong SH., Chang CL., Cho SR., Ahn JY, et al. Prevalence and diversity of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates in Korea. Korean J Clin Microbiol. 2003. 6:149–55. (홍성근, 김선주, 정석훈, 장철훈, 조성란, 안지영 등. 국내에서 분리된 Extended-Spectrum β-Lactamase 생성 Escherichia coli와 Klebsiella pneumoniae의 빈도 및 유형. 대한임상미생물학회지 2003;6: 149-55.).
28.Pitout JD., Nordmann P., Laupland KB., Poirel L. Emergence of Enterobacteriaceae producing extended-spectrum β-lactamases (ESBLs) in the community. J Antimicrob Chemother. 2005. 56:52–9.
29.Johnson JR., Delavari P., Kuskowski M., Stell AL. Phylogenetic distribution of extraintestinal virulence-associated traits in Escherichia coli. J Infect Dis. 2001. 183:78–88.
30.Johnson JR., Kuskowski MA., Owens K., Gajewski A., Winokur PL. Phylogenetic origin and virulence genotype in relation to resistance to fluoroquinolones and/or extended-spectrum cephalosporins and cephamycins among Escherichia coli isolates from animals and humans. J Infect Dis. 2003. 188:759–68.
31.Pitout JD., Laupland KB., Church DL., Menard ML., Johnson JR. Virulence factors of Escherichia coli isolates that produce CTX-M-type extended-spectrum β-lactamases. Antimicrob Agents Chemother. 2005. 49:4667–70.

Table 1.
Primers used in this study
PCR target Primer name Primer sequence Reference
blaCTX-M (CTX-M-1 cluster) CTX-M-1F 5′-GGACGTACAGCAAAAACTTGC-3′  
  CTX-M-1R 5′-CGGTTCGCTTTCACTTTTCTT-3′  
blaCTX-M (CTX-M-2 cluster) CTX-M-2F 5′-CGGTGCTTAAACAGAGCGAG-3′  
  CTX-M-2R 5′-CCATGAATAAGCAGCTGATTGCCC-3′  
blaCTX-M (CTX-M-8 cluster) CTX-M-8F 5′-ACGCTCAACACCGCGATC-3′  
  CTX-M-8R 5′-CGTGGGTTCTCGGGGATAA-3′  
blaCTX-M (CTX-M-9 cluster) CTX-M-9F 5′-GATTGACCGTATTGGGAGTTT-3′  
  CTX-M-9R 5′-CGGCTGGGTAAAATAGGTCA-3′  
blaTEM TEM-F 5′-ATGAGTATTCAACATTTCCGT-3′ [18]
  TEM-R 5′-TTACCAATGCTTAATCAGTGA-3′  
blaSHV SHV-F 5′-CCGGGTTATTCTTATTTGTCGCT-3′  
  SHV-R 5′-TAGCGTTGCCAGTGCTCG-3′  
blaVEB VEB-F 5′-ACCAGATAGGAGTACAGACATATGA-3′  
  VEB-R 5′-TTCATCACCGCGATAAAGCAC-3′  
blaGES/IBC GES/IBC-F 5′-GTTAGACGGGCGTACAAAGATAAT-3′  
  GES/IBC-R 5′-TGTCCGTGCTCAGGATGAGT-3′  
blaTLA TLA-F 5′-CGCGAAAATTCTGAAATGAC-3′  
  TLA-R 5′-AGGAAATTGTACCGAGACCCT-3′  
blaDHA-1-like DHA-F 5′-GGGGAGATAACGTCTGACCA-3′  
  DHA-R 5′-TAGCCAGATCCAGCAATGTG-3′  
blaCMY-1-like CMY-1F 5′-TCACATCGGCTTCACAGAGC-3′  
  CMY-1R 5′-CCATGGTGATGCTGTCAAAGA-3′  
blaCMY-2-like CMY-2F 5/-CAACACGGTGCAAATCAAAC-3, [19]
  CMY-2R 5′-CATGGGATTTTCCTTGCTGT-3′  
blaACT-1-like ACT-1F 5′-CGTCATGGTCTCGTCCGTTAG-3′  
  ACT-1R 5′-CCTTGACCTCATCCGGTACCT-3′  
qnrA1 to qnrA6 QnrAm-F 5′-AGAGGATTTCTCACGCCAGG-3′  
  QnrAm-R 5′-TGCCAGGCACAGATCTTGAC-3′  
qnrB1 to qnrB6 QnrBm-F 5′-GGMATHGAAATTCGCCACTG-3′  
  QnrBm-R 5′-TTTGCYGYYCGCCAGTCGAA-3′ [20]
qnrS1 to qnrS2 QnrSm-F 5′-GCAAGTTCATTGAACAGGGT-3′  
  QnrSm-R 5′-TCTAAACCGTCGAGTTCGGCG-3′  
aac(6′)-lb AAC(6′)-IbF 5′-TGACCAACAGCAACGATTCC-3′ [21]
  AAC(6′)-IbR 5′-TTAGGCATCACTGCGTGTTC-3′  
armA armA-F 5′-TATGGGGGTCTTACTATTCTGCCTAT-3′  
  armA-R 5′-TCTTCCATTCCCTTCTCCTTT-3′  
rmtA rmtA-F 5′-CTAGCGTCCATCCTTTCCTC-3′  
  rmtA-R 5′-TTTGCTTCCATGCCCTTGCC-3′  
rmtB rmtB-F 5′-TCAACGATGCCCTCACCTC-3′  
  rmtB-R 5′-GCAGGGCAAAGGTAAAATCC-3′ [22]
rmtC rmtC-F 5′-GCCAAAGTACTCACAAGTGG-3′  
  rmtC-R 5′-CTCAGATCTGACCCAACAAG-3′  
rmtD rmtD-F 5′-CTGTTTGAAGCCAGCGGAACGC-3′  
  rmtD-R 5′-GCGCCTCCATCCATTCGGAATAG-3′  
npmA npmA-F 5′-CTCAAAGGAACAAAGACGG-3′  
  npmA-R 5′-GAAACATGGCCAGAAACTC-3′  
Table 2.
Characteristics of urinary E. coli isolates containing genes encoding ESBLs
Strain MICs (mg/L) Susceptibility Trans-Conjugability Antimicrobial resistance genes encoding Phylogenetic group
CAZ CAZ/CA CTX CTX/CA FOX CIP G NN AN ESBL AmpC Qnr AAC(6′)-Ib-cr Methylase
KU05/10441 128 128 >256 >256 >256 >256 R R R + CTX-M-3 CMY-10     armA B2
KU05/17759 64 2 256 1 128 >256 R R R + CTX-M-3 DHA-1 QnrB4 + armA A
KU05/18969 16 1 128 0.3 16 >256 R R I + CTX-M-3     + armA A
KU05/23567 64 8 >256 4 32 >256 R R R + CTX-M-3         B2
KU05/24485 128 256 >256 >256 >256 >256 R R I + CTX-M-3 CMY-10   +   B2
KU05/27254 16 1 >256 0.5 16 >256 R R S + CTX-M-3         D
KU05/14811 32 0.3 256 0.3 32 >256 R R S - CTX-M-15     +   B2
KU05/16013 64 0.5 >256 0.3 8 >256 R R S - CTX-M-15   QnrS1 +   B2
KU05/17301 256 0.5 >256 1 8 >256 R R S - CTX-M-15         B2
KU05/19020 >256 2 >256 1 32 >256 R R S - CTX-M-15     +   B2
KU05/21856 32 0.5 128 0.1 4 16 R R S + CTX-M-15     +   B1
KU05/22571 256 2 >256 1 8 >256 R R S + CTX-M-15     +   A
KU05/23521 64 0.5 128 0.1 8 >256 R R S - CTX-M-15     +   A
KU05/23984 256 2 >256 1 32 >256 R R S + CTX-M-15     +   B2
KU05/24852 128 1 >256 1 32 >256 R R S - CTX-M-15     +   B2
KU05/27014 64 1 256 0.3 4 >256 R R S - CTX-M-15     +   B2
KU05/29305 64 1 >256 0.3 64 >256 R R S - CTX-M-15     +   B2
KU05/29630 64 4 >256 2 256 >256 R R R + CTX-M-15     + rmtB D
KU05/28700 >256 2 >256 0.5 32 64 R R S + CTX-M-15     +   B2
KU05/19028 4 0.5 >256 0.3 32 >256 R S S + CTX-M-14         D
KU05/27080 16 2 >256 1 32 >256 S S S - CTX-M-14         D
KU05/29253 16 2 256 1 16 >256 S R R - CTX-M-14     +   D
KU05/14517 256 1 >256 1 32 >256 R R S - TEM-52     +   B2
KU05/30403 64 1 >256 0.5 16 >256 R R S - CTX-M-14+ CTX-M-15         D
KU05/31131 16 1 >256 0.5 16 >256 R R S + CTX-M-3+ CTX-M-14         D
KU05/15422 256 1 >256 0.5 16 >256 R R I - CTX-M-14+ SHV-12     +   B2
KU05/21306 256 1 128 0.1 4 >256 R R R + CTX-M-3+     + armA B1
                      CTX-M-9+SHV-12          

Antimicrobial susceptibilities of E. coli isolates determined by disk diffusion assay.

Abbreviations: MIC, minimum inhibitory concentration; CAZ, ceftazidime; CA, clavulanic acid; CTX, cefotaxime; FOX, cefoxitin; CIP, ciprofloxacin; G, gentamicin; NN, tobramycin; AN, amikacin; AmpC, AmpC β-lactamase; R, resistant; I, intermediately resistant; S, susceptible; ESBL, extended-spectrum β-lactamase.

Table 3.
Phylogenetic background of the 27 ESBL-producing urinary E. coli isolates
ESBL gene Phylogenetic group Total
A B1 B2 D
blaCTX-M-3 2   3 1 6
blaCTX-M-15 2 1 9 1 13
blaCTX-M-14       3 3
blaTEM-52     1   1
blaCTX-M-14+ blaCTX-M-15       1 1
blaCTX-M-3+ blaCTX-M-14       1 1
blaCTX-M-14+ blaSHV-12     1   1
blaCTX-M-3+blaCTX-M-9+blaSHV-12   1      
Total 4 2 14 7 27

Abbreviation: ESBL, extended-spectrum β-lactamase.

TOOLS
Similar articles