Journal List > Korean J Lab Med > v.26(6) > 1011350

Lee, Kim, and Kim: Defining an Optimal Number of Immunophenotypic Markers for Lineage Assignment of Acute Leukemias Based on the EGIL Scoring System

Abstract

Background

The lineage assignment in acute leukemias is critical in therapeutic decisions. Immunophenotyping by flow cytometry plays the main role in the lineage assignment; however, few studies have been done to determine the optimal set of markers. In this regard, we tried to find out the optimal first-line set of markers with a minimal compromise in its diagnostic sensitivity.

Materials and Methods

We retrospectively analyzed 321 cases of acute leukemias whose diagnoses were based on the EGIL (European Group for Immunological Classification of Acute Leukemia) scores. At our institution, flow cytometic analyses included 15 first-line markers and 4 additional second-line markers as needed, along with immunohistochemical stains. We performed simulational studies for the expected EGIL scores involving every possible combination of markers and analyzing the overall diagnostic sensitivities in each combination.

Results

The cytoplasmic antigens including MPO stain and CD79a stain contributed greatly to the lineage assignment. For a sensitivity over 95%, there needed a combination of MPO stain with other 5 flow markers (CD33, CD13, CD14, CD15 and CD117) for myeloid lineage; CD79a stain with 3 flow markers [CD19, CD10, and CD20 (or TdT)] for B-lymphoid lineage; and 4 flow markers (CD2, CD3, CD5, and CD7) for T-lymphoid lineage.

Conclusions

To maintain diagnostic sensitivities over 95% for each lineage, at least 14 markers (including MPO stain and CD79a stain) were needed; while 16 markers were needed for a sensitivity of 100%. When combined with other important markers for specific aims such as CD45, the minimum number of markers needed for the accurate diagnosis of acute leukemias would be more than about 18 to 20.

References

1. McCulloch EA. Stem cells in normal and leukemic hemopoiesis (Henry Stratton Lecture, 1982). Blood. 1983; 62:1–13.
crossref
2. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol. 1976; 33:451–8.
crossref
3. Harris NL, Jaffe ES, Diebold J, Flandrin G, Muller-Hermelink HK, Vardiman J, et al. World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee meeting-Airlie House, Virginia, November 1997. J Clin Oncol. 1999; 17:3835–49.
crossref
4. Tallman MS, Gilliland DG, Rowe JM. Drug therapy for acute myeloid leukemia. Blood. 2005; 106:1154–63.
crossref
5. Pui CH, Evans WE. Treatment of acute lymphoblastic leukemia. N Engl J Med. 2006; 354:166–78.
crossref
6. Bene MC, Castoldi G, Knapp W, Ludwig WD, Matutes E, Orfao A, et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia. 1995; 9:1783–6.
7. The value of c-kit in the diagnosis of biphenotypic acute leukemia. EGIL (European Group for the Immunological Classification of Leukaemias). Leukemia. 1998; 12:2038.
8. Jennings CD, Foon KA. Recent advances in flow cytometry: application to the diagnosis of hematologic malignancy. Blood. 1997; 90:2863–92.
crossref
9. Hallden G, Andersson U, Hed J, Johansson SG. A new membrane permeabilization method for the detection of intracellular antigens by flow cytometry. J Immunol Methods. 1989; 124:103–9.
10. Braylan RC, Orfao A, Borowitz MJ, Davis BH. Optimal number of reagents required to evaluate hematolymphoid neoplasias: results of an international consensus meeting. Cytometry. 2001; 46:23–7.
crossref
11. Bene MC. Immunophenotyping of acute leukaemias. Immunol Lett. 2005; 98:9–21.
12. Basso G, Buldini B, De Zen L, Orfao A. New methodologic approaches for immunophenotyping acute leukemias. Haematologica. 2001; 86:675–92.
13. Lacombe F, Durrieu F, Briais A, Dumain P, Belloc F, Bascans E, et al. Flow cytometry CD45 gating for immunophenotyping of acute myeloid leukemia. Leukemia. 1997; 11:1878–86.
crossref
14. Orfao A, Schmitz G, Brando B, Ruiz-Arguelles A, Basso G, Braylan R, et al. Clinically useful information provided by the flow cytometric immunophenotyping of hematological malignancies: current status and future directions. Clin Chem. 1999; 45:1708–17.

Table 1.
The distribution of scores for each lineage according to the types of leukemias
Lineage Score AML B-ALL T-ALL M/B-BAL
M score 0 32/87 6/14
      (36.8%) (42.9%)  
  0.5–2 55/87 8/14
      (63.2%) (57.1%)  
  2.5–4 119/187 13/14
    (66.3%)     (92.9%)
  >4 63/187 1/14
    (33.7%)     (7.1%)
B score 0 128/187 9/14
    (68.4%)   (64.3%)*  
  0.5–2 59/187 5/14
    (31.5%)   (35.7%)*  
  2.5–4 34/87 10/14
      (39.1%)   (71.4%)
  >4 53/87 4/14
      (60.9%)   (28.6%)
T score 0 147/187 80/87 14/14
    (78.6%)* (92.0%)*   (100%)*
  0.5–2 40/187 7/87 0
    (21.4%)* (8.0%)*    
  2.5∼4 3/14
        (21.4%)  
  >4 11/14
        (78.6%)  

* CD10 and TdT were excluded.

Table 2.
The concordance rate between flow cytometric markers and immunocytochemical stains
  +/+ +/- −/+ −/- NC Concordance rate
MPO/stMPO 107 2 23 82 101 88.3%
CD3/stCD3 3 3 2 21 286 82.8%
CD20/stCD20 35 8 3 45 224 87.9%
TdT/stTdT 81 2 2 12 218 95.9%
CD14/ANBE 11 4 19 111 170 84.1%

Abbreviations: NC, not comparable; MPO, myeloperoxidase; stMPO, MPO stain; stCD3, CD3 stain; stCD20, CD20 stain; TdT, terminal deoxynucleotidyl transferase; stTdT, TdT stain; ANBE, alpha-naphthyl butyrate esterase.

Table 3.
The best combinations and sensitivities for myeloid markers
Combination Number of flow markers Best combination Positive Sensitivity (%)
Flow marker only 2 MPO+CD33 152/204 74.5
  3 MPO+CD33+CD13(or CD14) 152/204 74.5
  4 MPO+CD33+CD13+CD14 157/204 77.0
  4+1 MPO+CD33+CD13+CD14+CD117 178/204 87.3
  4+2 MPO+CD33+CD13+CD14+CD117+CD15 187/204 91.7
  4+3 MPO+CD33+CD13+CD14+CD117+CD15+CD65 192/204 94.1
  4+4 MPO+CD33+CD13+CD14+CD117+CD15+CD65+CD64 192/204 94.1
With stMPO 1 stMPO+CD33 122/145 84.1
  2 stMPO+CD33+CD13(or CD14) 122/145 84.1
  3 stMPO+CD33+CD13+CD14 123/145 84.8
  3+1 stMPO+CD33+CD13+CD14+CD15 135/145 93.1
  3+2 stMPO+CD33+CD13+CD14+CD15+CD117 139/145 95.9
  3+3 stMPO+CD33+CD13+CD14+CD15+CD117+CD65 142/145 97.9
  3+4 stMPO+CD33+CD13+CD14+CD15+CD117+CD65+CD64 142/145 97.9
MPO with stMPO 2 stMPO+MPO+CD33 125/145 86.2
  3 stMPO+MPO+CD33+CD13(or CD14) 125/145 86.2
  4 stMPO+MPO+CD33+CD13+CD14 126/145 86.9
  4+1 stMPO+MPO+CD33+CD13+CD14+CD15 138/145 95.2
  4+2 stMPO+MPO+CD33+CD13+CD14+CD15+CD117 142/145 97.9
  4+3 stMPO+MPO+CD33+CD13+CD14+CD15+CD117+CD65 145/145 100
  4+4 stMPO+MPO+CD33+CD13+CD14+CD15+CD117+CD65+CD64 145/145 100

Abbreviations: See Table 2.

Table 4.
The best combinations and sensitivities for B-lymphoid markers
Combination Number of flow Best combination markers Positive Sensitivity (%)
Flow marker only With stCD79a 3 CD19+CD10+TdT 74/102 72.5
  4 CD19+CD20+CD10+TdT 88/102 86.3
  1 stCD79a+CD19 73/78 93.6
  2 stCD79a+CD19+CD10 (or CD20) 73/78 93.6
  stCD79a+CD19(or CD10 or CD20)+TdT 73/78 93.6
  3 stCD79a+CD19+CD10+ CD20(or TdT) 77/78 98.7
  4 stCD79a+CD19+CD10+ CD20+TdT 78/78 100

Abbreviation: stCD79a, CD79a stain.

Table 5.
The best combinations and sensitivities for T-lymphoid markers
Combination Number of flow markers Best combination Positive Sensitivity (%)
1st-line markers 3 CD2+CD5+CD7 13/18 72.2
  4 CD2+CD5+CD7+CD10 16/18 88.9
  5 CD2+CD5+CD7+CD10+TdT 16/18 88.9
  5+1 CD2+CD5+CD7+CD10+ TdT+CD3 18/18 100
1st-line markers with CD3 2 CD3+CD7 12/14 85.7
  3 CD3+CD7+CD2(or CD5 or CD10 or TdT) 12/14 85.7
    CD3+CD2+CD5(or TdT) 12/14 85.7
    CD3+CD10+TdT 12/14 85.7
  4 CD3+CD7+CD2+CD5 14/14 100
  5 CD3+CD7+CD2+CD5+CD10(or TdT) 14/14 100
  6 CD3+CD7+CD2+CD5+CD10+TdT 14/14 100
TOOLS
Similar articles