Abstract
Purpose
To measure changes in ocular biometrics required for calculating intraocular lens powers during cataract surgery on phakic eyes undergoing implantation of a collamer lens (AQUA ICL [STAAR Surgical Company, Monrovia, CA, USA] or an Artiflex® lens [Ophtec BV, Groningen, Netherlands]) to correct myopia.
Methods
A total of 45 eyes of 23 patients who underwent implantation of iris-fixated or posterior chamber phakic intraocular lenses (pIOLs) for correction of myopia >−7D were evaluated using the euphakic mode of the IOL Master® 500 (Carl Zeiss Meditec AG, Jena, Germany) prior to pIOL implantation. After implantation, the axial length (AL) and anterior chamber depth (ACD) were measured 1 month postoperatively using both the euphakic and pseudophakic modes of the instrument. We compared differences between predicted IOL powers calculated using the Sanders-Retzlaff-Kraff/Theoretical (SRK/T) and Haigis formulae.
Results
Seventeen eyes (37.8%) receiving ICL and 28 (62.2%) Artiflex® pIOL implants were included in the study. After pIOL implantation, ALs measured by the euphakic and pseudophakic modes of the IOL Master were significantly longer (p = 0.03, p < 0.0001) and ACDs significantly shorter (p < 0.0001, p < 0.0001, respectively) than preoperatively. The changes after surgery were less when the euphakic rather than the pseudophakic measurement mode was employed. The postoperative IOL powers predicted by the SRK/T (−0.03D, p = 0.023) and Haigis formulae (−0.06D, p = 0.001) were significantly lower that the preoperative values. However, the differences were small and did not influence IOL power selection.
Conclusions
After pIOL implantation, AL changes were less when measured using the euphakic rather than the pseudophakic mode of the IOL Master. Although the ACDs differed significantly after pIOL implantation, the changes were too small to influence IOL power calculations. ACD measurements differed significantly from those of AL after IOL implantation. Thus, a pIOL implantation history may affect biometric findings during cataract surgery.
REFERENCES
1). Dawson DG, Randleman JB, Grossniklaus HE, et al. Corneal ectasia after excimer laser keratorefractive surgery: histopathology, ultrastructure, and pathophysiology. Ophthalmology. 2008; 115:2181–91.
2). Geggel HS, Talley AR. Delayed onset keratectasia following laser in situ keratomileusis. J Cataract Refract Surg. 1999; 25:582–6.
3). Guell JL, Vázquez M, Gris O. Adjustable refractive surgery: 6-mm Artisan lens plus laser in situ keratomileusis for the correction of high myopia. Ophthalmology. 2001; 108:945–52.
4). Fernandes P, González-Méijome JM, Madrid-Costa D, et al. Implantable collamer posterior chamber intraocular lenses: a review of potential complications. J Refract Surg. 2011; 27:765–76.
5). Moshirfar M, Mifflin M, Wong G, Chang JC. Cataract surgery following phakic intraocular lens implantation. Curr Opin Ophthalmol. 2010; 21:39–44.
6). de Vries NE, Tahzib NG, Budo CJ, et al. Results of cataract surgery after implantation of an iris-fixated phakic intraocular lens. J Cataract Refract Surg. 2009; 35:121–6.
7). Schallhorn SC, Amesbury EC, Tanzer DJ. Avoidance, recognition, and management of LASIK complications. Am J Ophthalmol. 2006; 141:733–9.
8). Alió JL, de la Hoz F, Pérez-santonja JJ, et al. Phakic anterior chamber lenses for the correction of myopia: a 7-year cumulative analysis of complications in 263 cases. Ophthalmology. 1999; 106:45866.
9). Pérez-Santonja JJ, Alió JL, Jiménez-Alfaro L, Zato MA. Surgical correction of severe myopia with an angle-supported phakic intraocular lens. J Cataract Refract Surg. 2000; 26:1288–302.
10). Asano-Kato N, Toda I, Hori-Komai Y, et al. Experience with the Artisan phakic intraocular lens in Asian eyes. J Cataract Refract Surg. 2005; 31:910–5.
11). Güell JL, Morral M, Gris O, et al. Five-year follow-up of399 phakic Artisan-Verisyse implantation for myopia, hyperopia, and/or astigmatism. Ophthalmology. 2008; 115:1002–12.
12). Sarikkola AU, Sen HN, Uusitalo RJ, Laatikainen L. Traumatic cataract and other adverse events with the implantable contact lens. J Cataract Refract Surg. 2005; 31:511–24.
13). Kohnen T, Kook D, Morral M, Güell JL. Phakic intraocular lenses: part 2: results and complications. J Cataract Refract Surg. 2010; 36:2168–94.
14). Younan C, Mitchell P, Cumming RG, et al. Myopia and incident cataract and cataract surgery: the blue mountains eye study. Invest Ophthalmol Vis Sci. 2002; 43:3625–32.
15). Chen LJ, Chang YJ, Kuo JC, et al. Meta-analysis of cataract development after phakic intraocular lens surgery. J Cataract Refract Surg. 2008; 34:1181–200.
16). Shin JY, Lee JB, Seo KY, et al. Comparison of preoperative and postoperative ocular biometry in eyes with phakic intraocular lens implantations. Yonsei Med J. 2013; 54:1259–65.
17). Alio JL, de la Hoz F, Ruiz-moreno JM, Salem TF. Cataract surgery in highly myopic eyes corrected by phakic anterior chamber angle-supported lenses(1). J Cataract Refract Surg. 2000; 26:1303–11.
18). Leccisotti A. Iridocyclitis associated with angle-supported phakic intraocular lenses. J Cataract Refract Surg. 2006; 32:1007–10.
19). Assetto V, Benedetti S, Pesando P. Collamer intraocular contact lens to correct high myopia. J Cataract Refract Surg. 1996; 22:551–6.
20). Sânchez-Galeana CA, Smith RJ, Sanders DR, et al. Lens opacities after posterior chamber phakic intraocular lens implantation. Ophthalmology. 2003; 110:781–5.
21). Zadok D, Chayet A. Lens opacity after neodymium: YAG laser iridectomy for phakic intraocular lens implantation. J Cataract Refract Surg. 1999; 25:592–3.
22). Silva RA, Jain A, Manche EE. Prospective long-term evaluation of the efficacy, safety, and stability of the phakic intraocular lens for high myopia. Arch Ophthalmol. 2008; 126:775–81.
23). Benedetti S, Casamenti V, Benedetti M. Long-term endothelial changes in phakic eyes after Artisan intraocular lens implantation to correct myopia: five-year study. J Cataract Refract Surg. 2007; 33:784–90.
24). Richdale K, Bullimore MA, Zadnik K. Lens thickness with age and accommodation by optical coherence tomography. Ophthalmic Physiol Opt. 2008; 28:441–7.
25). Doors M. Cals DW, Berendschot TT, et al. Influence of anterior chamber morphometrics on endothelial cell changes after phakic intraocular lens implantation. J Cataract Refract Surg. 2008; 34:2110–8.
26). Saragoussi JJ, Cotinat J, Renard G, et al. Damage to the corneal endothelium by minus power anterior chamber intraocular lenses. Refract Corneal Surg. 1991; 7:282–5.
27). Yee RW, Matsuda M, Schultz RO, Edelhauser HF. Changes in the normal corneal endothelial cellular pattern as a function of age. Curr Eye Res. 1985; 4:671–8.
28). Sanders DR, Bernitsky DA, Harton PJ Jr, Rivera RR. The Visian myopic implantable collamer lens does not significantly affect axial length measurement with the IOLMaster. J Refract Surg. 2008; 24:957–9.
29). Langenbucher A, Eppig T, Viestenz A, et al. Individualization of IOL constants for two hydrophobic intraocular lenses. SRK II, SRK/T, Hoffer-Q, Holladay 1 and Haigis formula. Ophthalmologe. 2012; 109:468–73.
30). Shin JY, Lee JB, Seo KY, et al. Comparison of preoperative and postoperative ocular biometry in eyes with phakic intraocular lens implantations. Yonsei Med J. 2013; 54:1259–65.
31). Giers U, Epple C. Comparison of A-scan device accuracy. J Cataract Refract Surg. 1990; 16:235–42.
32). Vetrugno M, Cardascia N, Cardia L. Anterior chamber depth measured by two methods in myopic and hyperopic phakic IOL implant. Br J Ophthalmol. 2000; 84:1113–6.
33). Sheng H, Bottjer CA, Bullimore MA. Ocular component measurement using the Zeiss IOLMaster. Optom Vis Sci. 2004; 81:27–34.
Table 1.
ICL | Artiflex | p-value | |
---|---|---|---|
Eyes (n, %) | 17 (37.8) | 28 (62.2) | |
Age (years) | 26.13 ± 6.21 | 22.86 ± 1.44 | 0.063 |
Gender (male/female) | 2/7 | 5/9 | |
SE (D) | −10.86 ± 4.21 | −11.91 ± 3.68 | 0.435 |
Table 2.
Preoperative (mm) | IOL® master mode | Postoperative (mm) | Change of biometry | p-value* | p-value† | |
---|---|---|---|---|---|---|
AL | 26.69 ± 0.99 | Euphakic | 26.70 ± 0.99 | +0.01 | 0.031* | <0.001† |
Pseudophakic | 26.80 ± 0.99 | +0.11 | <0.001* | |||
ACD | 3.81 ± 0.14 | Euphakic | 3.69 ± 0.35 | −0.11 | <0.001* | 0.228† |
Pseudophakic | 3.58 ± 0.15 | −0.14 | <0.001* |
Values are presented as mean ± SD unless otherwise indicated. Preoperative values measured by euphakic mode. ‘Change of ocular biometry’ means ‘postoperative ocular biometry-preoperative ocular biometry’.
Table 3.
Preoperative (mm) | Postoperative (mm) | p-value | ||
---|---|---|---|---|
AL | ||||
ICL | 26.35 ± 0.99 | 26.36 ± 0.99 | 0.146 | |
Artiflex | 27.06 ± 0.87 | 27.08 ± 0.89 | 0.097 | |
Total | 26.69 ± 0.99 | 26.70 ± 0.99 | 0.030* | |
ACD | ||||
ICL | 3.74 ± 0.14 | 3.58 ± 0.15 | <0.001* | |
Artiflex | 3.88 ± 0.17 | 3.81 ± 0.15 | 0.011* | |
Total | 3.81 ± 0.31 | 3.69 ± 0.35 | <0.001* |
Table 4.
Preoperative predicted IOL power (D) | IOL®master mode | Postoperative predicted IOL power (D) | Change of predicted IOL power (D) | p-value* | p-value† | |
---|---|---|---|---|---|---|
SRK/T | 11.69 ± 2.72 | Euphakic | 11.66 ± 2.73 | −0.03 | 0.023* | <0.001† |
Pseudophakic | 11.35 ± 2.72 | −0.34 | <0.001* | |||
Haigis | 11.67 ± 2.72 | Euphakic | 11.61 ± 2.72 | −0.06 | 0.001* | <0.001† |
Pseudophakic | 11.29 ± 2.67 | −0.38 | <0.001* |
Values are presented as mean ± SD unless otherwise indicated. Preoperative values measured by euphakic mode. ‘Change of ocular predicted IOL power’ means ‘postoperative predicted IOL power - preoperative predicted IOL power’.