Journal List > J Korean Ophthalmol Soc > v.58(7) > 1010815

So, Keun, and Ji Woong Lee,: Diagnostic Accuracies of Bruch Membrane Opening-minimum Rim Width and Retinal Nerve Fiber Layer Thickness in Glaucoma

Abstract

Purpose

To compare the diagnostic capability of Bruch membrane opening-minimum rim width (BMO-MRW) and peripapillary retinal nerve fiber layer (RNFL) thickness for the detection of primary open angle glaucoma.

Methods

Spectral-domain optical coherence tomography (SD-OCT) with 24 radial and 1 peripapillary B-scans centered on the Bruch membrane opening (BMO) was performed. Two SD-OCT parameters were computed globally and sectorally: (1) BMO- MRW, the minimum distance between BMO and internal limiting membrane; and (2) peripapillary retinal nerve fiber layer (RNFL) thickness. The diagnostic performance of BMO-MRW and RNFL thickness were compared with receiver operating characteristic (ROC) analysis globally and sectorally. Areas under the ROC (AUC) were calculated and compared.

Results

One hundred fourteen eyes (52 healthy, 62 glaucomatous) of 114 participants were included. In global analyses, the performance of BMO-MRW was similar to that of RNFL thickness (AUC 0.95 [95% confidence interval {CI}, 0.91-0.99], and 0.95 [95% CI, 0.91-0.99], respectively, p=0.93). In sectoral analyses, the pair-wise comparison among the ROC curves showed no statistical difference for all sectors except for the superotemporal, superonasal, and nasal sectors, which had significantly larger AUCs in BMO-MRW compared to RNFL thickness (p=0.03, p<0.001, and p=0.03, respectively). The parameter with the largest AUC was the inferotemporal sector for both BMO-MRW and RNFL thickness (AUC 0.98 [95% CI, 0.96-1.00], and 0.98 [95% CI, 0.96-1.00], respectively, p=0.99).

Conclusions

Global BMO-MRW performed as well as global RNFL thickness for detection of glaucoma. In superotemporal, su-peronasal and nasal sectors, regional BMO-MRW performed better than regional RNFL thickness.

References

1. Sommer A, Miller NR, Pollack I. . The nerve fiber layer in the diagnosis of glaucoma. Arch Ophthalmol. 1977; 95:2149–56.
crossref
2. Quigley HA, Addicks EM, Green WR. Optic nerve damage in hu-man glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy. Arch Ophthalmol. 1982; 100:135–46.
crossref
3. Chauhan BC, O'Leary N, Almobarak FA. . Enhanced detection of open-angle glaucoma with an anatomically accurate optical coher-ence tomography-derived neuroretinal rim parameter. Ophthalmology. 2013; 120:535–43.
crossref
4. Reis AS, Sharpe GP, Yang H. . Optic disc margin anatomy in patients with glaucoma and normal controls with spectral domain optical coherence tomography. Ophthalmology. 2012; 119:738–47.
crossref
5. Mizumoto K, Gosho M, Zako M. Correlation between optic nerve head structural parameters and glaucomatous visual field indices. Clin Ophthalmol. 2014; 8:1203–8.
6. Pollet-Villard F, Chiquet C, Romanet JP. . Structure-function relationships with spectral-domain optical coherence tomography retinal nerve fiber layer and optic nerve head measurements. Invest Ophthalmol Vis Sci. 2014; 55:2953–62.
crossref
7. Gardiner SK, Ren R, Yang H. . A method to estimate the amount of neuroretinal rim tissue in glaucoma: comparison with current methods for measuring rim area. Am J Ophthalmol. 2014; 157:540–9.e1-2..
crossref
8. Danthurebandara VM, Sharpe GP, Hutchison DM. . Enhanced structure-function relationship in glaucoma with an anatomically and geometrically accurate neuroretinal rim measurement. Invest Ophthalmol Vis Sci. 2014; 56:98–105.
crossref
9. Kim M, Kim TW, Weinreb RN, Lee EJ. Differentiation of para-papillary atrophy using spectral-domain optical coherence tomography. Ophthalmology. 2013; 120:1790–7.
crossref
10. Knighton RW, Qian C. An optical model of the human retinal nerve fiber layer: implications of directional reflectance for variability of clinical measurements. J Glaucoma. 2000; 9:56–62.
crossref
11. Malik R, Swanson WH, Garway‐ Heath DF. ‘Structure-function re-lationship’ in glaucoma: past thinking and current concepts. Clin Exp Ophthalmol. 2012; 40:369–80.
crossref
12. Jeoung JW, Kim TW, Kang KB. . Overlapping of retinal nerve fibers in the horizontal plane. Invest Ophthalmol Vis Sci. 2008; 49:1753–7.
crossref
13. He L, Ren R, Yang H. . Anatomic vs. acquired image frame dis-cordance in spectral domain optical coherence tomography mini-mum rim measurements. PLoS One. 2014; 9:e92225.
14. Chauhan BC, Burgoyne CF. From clinical examination of the optic disc to clinical assessment of the optic nerve head: a paradigm change. Am J Ophthalmol. 2013; 156:218–27.e2..
crossref
15. Malik R, Belliveau AC, Sharpe GP. . Diagnostic accuracy of optical coherence tomography and scanning laser tomography for identifying glaucoma in myopic eyes. Ophthalmology. 2016; 123:1181–9.
crossref
16. Yarmohammadi A, Zangwill LM, Diniz-Filho A. . Peripapillary and macular vessel density in patients with glaucoma and single-hemifield visual field defect. Ophthalmology. 2017; 124:709–19.
crossref
17. Kook MS, Sung K, Kim S. . Study of retinal nerve fibre layer thickness in eyes with high tension glaucoma and hemifield defect. Br J Ophthalmol. 2001; 85:1167–70.
crossref
18. Takagi ST, Kita Y, Yagi F, Tomita G. Macular retinal ganglion cell complex damage in the apparently normal visual field of glaucom-atous eyes with hemifield defects. J Glaucoma. 2012; 21:318–25.
crossref
19. Na JH, Kook MS, Lee Y. . Detection of macular and circum-papillary structural loss in normal hemifield areas of glaucomatous eyes with localized visual field defects using spectral-domain opti-cal coherence tomography. Graefes Arch Clin Exp Ophthalmol. 2012; 250:595–602.
crossref
20. Fortune B, Hardin C, Reynaud J. . Comparing optic nerve head rim width, rim area, and peripapillary retinal nerve fiber layer thick-ness to axon count in experimental glaucoma. Invest Ophthalmol Vis Sci. 2016; 57:OCT404–12.
crossref
21. Fortune B, Reynaud J, Hardin C. . Experimental glaucoma causes optic nerve head neural rim tissue compression: a poten-tially important mechanism of axon injury. Invest Ophthalmol Vis Sci. 2016; 57:4403–11.
crossref
22. Lee SH, Kim SH, Kim TW. . Reproducibility of retinal nerve fiber thickness measurements using the test-retest function of spec-tral OCT/SLO in normal and glaucomatous eyes. J Glaucoma. 2010; 19:637–42.
crossref
23. Mwanza JC, Chang RT, Budenz DL. . Reproducibility of peri-papillary retinal nerve fiber layer thickness and optic nerve head parameters measured with cirrus HD-OCT in glaucomatous eyes. Invest Ophthalmol Vis Sci. 2010; 51:5724–30.
crossref
24. Hwang YH, Song M, Kim DW, Uhm KB. Retinal nerve fiber layer thickness measurement repeatability for cirrus HD-OCT retinal tracking system during eye movement. J Glaucoma. 2016; 25:e214–9.
crossref

Figure 1.
Neuroretinal rim parameters measured with Spectralis optical coherence tomography. B-scan illustrating Bruch mem-brane opening (BMO), and Bruch membrane opening-minimum rim width (BMO-MRW), the minimum distance from BMO to the internal limiting membrane (ILM).
jkos-58-836f1.tif
Figure 2.
The receiver operating characteristic (ROC) curves. ROC curves illustrating the diagnostic performance of global Bruch membrane opening-minimum rim width (BMO-MRW) and retinal nerve fiber layer thickness (RNFLT).
jkos-58-836f2.tif
Figure 3.
The receiver operating characteristic curves illustrating the diagnostic performance of sectoral Bruch membrane opening-minimum rim width (BMO-MRW) and retinal nerve fiber layer thickness (RNFLT). (A) Superonasal. (B) Nasal. (C) Inferonasal. (D) Superotemporal. (E) Temporal. (F) Inferotemporal.
jkos-58-836f3.tif
Table 1.
Demographic and ocular characteristics of the included eyes
Normal group (n = 52 eyes) Glaucoma patients (n= 62 eyes) p-value
Age (years) 54.96 ± 13.69 60.88 ± 11.30 0.013*
Intraocular pressure (mmHg) 14.54 ± 2.91 14.81 ± 3.27 0.648*
Central corneal thickness (µm) 545.56 ± 39.04 540.78 ± 38.54 0.526*
Axial length (mm) 23.79 ± 1.29 23.97 ± 1.50 0.889
Spherical equivalent (diopter) -0.96 ± 2.42 -1.04 ± 2.70 0.984
Gender (n) (male/female) 24/28 34/28 0.356
Eye laterality (n) (right/left) 25/27 26/36 0.511
Lens (n) (phakic/pseudophakic) 48/4 57/5 0.941
Visual field
Mean deviation (dB) -0.76 ±1.74 -7.64 ± 5.23 <0.001
Pattern standard deviation (dB) 1.63 ± 0.45 7.33 ± 3.74 <0.001
Visual Field Index (%) 99.1 ± 1.27 80.02 ± 16.49 <0.001
Comorbidity (n)
Hypertension 7 17 0.069
Diabetes 9 7 0.357
Tilt ratio 1.11 ± 0.09 1.11 ± 0.11 0.986*
Degree of rotation (°) 2.35 ± 8.51 3.74 ± 9.03 0.404
β-Zone PPA (n, %) 11 (21.15) 41 (66.13) <0.001

Values are presented as mean ± SD unless otherwise indicated. PPA = parapapillary atrophy.

* Student's t-test.

Mann-Whitney U-test.

Chi-squared test.

Table 2.
Comparison of global and regional Bruch membrane opening-minimum rim and retinal nerve fiber layer thickness measure-ments in the healthy and glaucomatous eyes
OCT parameters Normal group Glaucoma patients p-value
BMO-MRW
BMO area 2.14 ± 0.46 2.18 ± 0.39 0.627*
Global 258.42 ± 49.84 159.11 ± 44.02 <0.001*
Temporal 187.4 ± 45.06 129.12 ± 43.32 <0.001*
Superotemporal 261.86 ± 51.43 156.32 ± 63.13 <0.001*
Inferotemporal 287.77 ± 55.7 126.24 ± 57.93 <0.001
Nasal 271.23 ± 62.91 179.32 ± 52.82 <0.001
Superonasal 303.23 ± 55.08 194.03 ± 66.81 <0.001*
Inferonasal 305.29 ± 59.96 171.72 ± 58.78 <0.001
RNFL thickness
Global 97.62 ± 9.68 68.11 ± 15.09 <0.001*
Temporal 74.64 ± 12.49 55.81 ± 15.02 <0.001*
Superotemporal 128.56 ± 20.16 87.53 ± 31.24 <0.001
Inferotemporal 151.19 ± 16.74 69.69 ± 30.34 <0.001
Nasal 74.08 ± 13.09 62.26 ± 14.66 <0.001*
Superonasal 120.75 ± 22.79 88.79 ± 26.41 <0.001*
Inferonasal 107.62 ± 20.2 70.63 ± 20.2 <0.001*

Values are presented as mean ± SD unless otherwise indicated. OCT = optical coherence tomography; BMO-MRW = Bruch membrane opening-minimum rim width; BMO = Bruch membrane opening; RNFL = retinal nerve fiber layer.

* Student's t-test.

Mann-Whitney U-test.

Table 3.
Areas under receiver operating characteristic curves (95% confidence interval) for Bruch membrane opening-minimum rim width and retinal nerve fiber layer thickness
Parameter BMO-MRW RNFL thickness p-value*
Global 0.951 (0.911-0.991) 0.953 (0.914-0.992) 0.932
Temporal 0.832 (0.759-0.906) 0.866 (0.797-0.935) 0.371
Superotemporal 0.914 (0.861-0.967) 0.852 (0.785-0.920) 0.033
Inferotemporal 0.981 (0.959-1.000) 0.981 (0.960-1.000) 0.991
Nasal 0.889 (0.829-0.949) 0.720 (0.627-0.813) <0.001
Superonasal 0.897 (0.840-0.954) 0.815 (0.738-0.893) 0.032
Inferonasal 0.950 (0.908-0.992) 0.908 (0.855-0.961) 0.178

BMO-MRW = Bruch membrane opening-minimum rim width; RNFL = retinal nerve fiber layer.

* p-value obtained from the pairwise comparison between 2 parameters.

Table 4.
Sensitivities and specificities set at 80% and 95% according to Bruch membrane opening-minimum rim width and retina nerve fiber layer thickness
BMO-MRW RNFL thickness
Specificity at 80% Specificity at 95% Specificity at 80% Specificity at 95%
Global 93.55 77.42 91.94 84.84
Temporal 72.58 40.32 80.32 52.58
Superotemporal 85.48 77.42 73.87 50.00
Inferotemporal 98.39 90.32 96.99 91.94
Nasal 80.65 45.16 45.32 29.35
Superonasal 82.26 62.90 69.03 36.77
Inferonasal 93.55 87.10 85.48 61.29

Values are presented as percentage (%). BMO-MRW = Bruch membrane opening-minimum rim width; RNFL = retinal nerve fiber layer.

TOOLS
Similar articles