Journal List > J Korean Ophthalmol Soc > v.58(3) > 1010723

Hwang, Lopilly Park, and Park: The Effectiveness of Visual Field C10-2 in the Early Detection of Glaucoma with Parafoveal Scotoma

Abstract

Purpose

To identify the correspondence between the central sensitivity of several visual field (VF) tests and ganglion cell inner plexiform layer (GC-IPL) thickness in early glaucoma patients with parafoveal scotoma.

Methods

Fifty-seven eyes from 57 patients with glaucomatous optic neuropathy and parafoveal scotoma were analyzed using the standard automated perimetry (SAP) C10-2 test, the SAP C24-2 test, and the frequency doubling technology perimetry (FDT) C24-2 test. The correlation between the VF central sensitivity and the GC-IPL thickness from macular scans via optical co-herence tomography was analyzed.

Results

The central sensitivity was 27.51 ± 5.43 dB, 27.39 ± 5.05 dB, and 22.09 ± 5.08 dB for SAP C24-2, SAP C10-2, and FDT C24-2, respectively. Mean GC-IPL thickness was 70.2 ± 8.5 μ m. Using regression analysis, the value of log R2 between the loga-rithmic central sensitivity and GC-IPL thickness was 0.498, and the linear R2 between the antilogarithmic central sensitivity and GC-IPL thickness in SAP C10-2 was 0.486, and both were statistically significant ( p < 0.05). This relationship was stronger in early glaucoma patients compared to late glaucoma patients using SAP C10-2.

Conclusions

The structure-function relationship between GC-IPL thickness and central sensitivity was better with SAP C10-2, especially in early glaucoma patients, compared to other VF modalities.

References

1. Hood DC, Kardon RH. A framework for comparing structural and functional measures of glaucomatous damage. Prog Retin Eye Res. 2007; 26:688–710.
crossref
2. Quigley HA, Addicks EM, Green WR. Optic nerve damage in hu-man glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy. Arch Ophthalmol. 1982; 100:135–46.
3. Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol. 1989; 107:453–64.
crossref
4. Anderson RS. The psychophysics of glaucoma: improving the structure/function relationship. Prog Retin Eye Res. 2006; 25:79–97.
crossref
5. . . Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci. 2000; 41:741–8.
6. Johnson CA. Selective versus nonselective losses in glaucoma. J Glaucoma. 1994; (3 Suppl 1):S32–44.
crossref
7. Johnson CA. The Glenn A. Fry Award Lecture. Early losses of vis-ual function in glaucoma. Optom Vis Sci. 1995; 72:359–70.
crossref
8. Jung KI, Park HY, Park CK. Characteristics of optic disc morphol-ogy in glaucoma patients with parafoveal scotoma compared to pe-ripheral scotoma. Invest Ophthalmol Vis Sci. 2012; 53:4813–20.
crossref
9. Traynis I, De Moraes CG, Raza AS. . Prevalence and nature of early glaucomatous defects in the central 10° of the visual field. JAMA Ophthalmol. 2014; 132:291–7.
crossref
10. Shin HY, Park HY, Jung KI. . Glaucoma diagnostic ability of ganglion cell-inner plexiform layer thickness differs according to the location of visual field loss. Ophthalmology. 2014; 121:93–9.
crossref
11. Park HY, Hwang BE, Shin HY, Park CK. Clinical clues to predict the presence of parafoveal scotoma on humphrey 10-2 visual field using a humphrey 24-2 visual field. Am J Ophthalmol. 2016; 161:150–9.
crossref
12. Park SC, Kung Y, Su D. . Parafoveal scotoma progression in glaucoma: humphrey 10-2 versus 24-2 visual field analysis. Ophthalmology. 2013; 120:1546–50.
13. Hangai M, Ikeda HO, Akagi T, Yoshimura N. Paracentral scotoma in glaucoma detected by 10-2 but not by 24-2 perimetry. Jpn J Ophthalmol. 2014; 58:188–96.
crossref
14. Brusini P, Salvetat ML, Zeppieri M, Parisi L. Frequency doubling technology perimetry with the Humphrey Matrix 30-2 test. J Glaucoma. 2006; 15:77–83.
crossref
15. Medeiros FA, Sample PA, Zangwill LM. . A statistical ap-proach to the evaluation of covariate effects on the receiver operat-ing characteristic curves of diagnostic tests in glaucoma. Invest Ophthalmol Vis Sci. 2006; 47:2520–7.
crossref
16. Racette L, Medeiros FA, Zangwill LM. . Diagnostic accuracy of the Matrix 24-2 and original N-30 frequency-doubling technol-ogy tests compared with standard automated perimetry. Invest Ophthalmol Vis Sci. 2008; 49:954–60.
crossref
17. Jung KI, Kang MK, Choi JA. . Structure-function relationship in glaucoma patients with parafoveal versus peripheral nasal scotoma. Invest Ophthalmol Vis Sci. 2016; 57:420–8.
crossref
18. Park SC, De Moraes CG, Teng CC. . Initial parafoveal versus peripheral scotomas in glaucoma: risk factors and visual field characteristics. Ophthalmology. 2011; 118:1782–9.
crossref

Figure 1.
Correlation between average GC-IPL thickness and central mean sensitivity. (A) FDT C24-2. (B) SAP C10-2. (C) SAP C24-2. Logarithmic and linear coefficient of determination values (R2) corresponding to each scale(logarithmic scale, anti-logarithmic scale). GC-IPL = ganglion cell inner plexiform layer; FDT = frequency doubling technology perimetry; SAP = stand-ard automated perimetry.
jkos-58-321f1.tif
Table 1.
Demographics of patients
Values
Age (years) 51.3 ± 11.9
Gender (female:male) 32:25
Spherical equivalent (diopters) -3.24 ± 3.10
Axial length (mm) 24.85 ± 1.67
Untreated baseline IOP (mmHg) 16.7 ± 3.9
Central corneal thickness (range, μ m) 542.8 ± 31.2 (483–619)
Average RNFL thickness (μ m) 78.5 ± 10.3
Average GC-IPL thickness (μ m) 70.2 ± 8.5
Minimum GC-IPL thickness (μ m) 58.2 ± 13.2
FDT MD (dB) -7.43 ± 4.52
FDT PSD (dB) 5.34 ± 2.28
FDT central sensitivity (dB) 22.09 ± 5.08
FDT central sensitivity (linear) 14.85 ± 7.89
SAP C24-2 MD (dB) -3.36 ± 3.96
SAP C24-2 PSD (dB) 5.27 ± 4.43
SAP C24-2 central sensitivity (dB) SAP C24-2 central sensitivity (linear) 27.51 ± 5.43 936.67 ± 725.49
SAP C10-2 MD (dB) -5.26 ± 5.07
SAP C10-2 PSD (dB) 6.48 ± 5.29
SAP C10-2 total sensitivity (dB) 27.39 ± 5.05
SAP C10-2 total sensitivity (linear) 878.85 ± 681.67

Values are presented as numbers or means ± standard deviation unless otherwise indicated.

IOP = intraocular pressure; RNFL = retinal nerve fiber layer; GC-IPL = ganglion cell inner plexiform layer; FDT = frequency doubling Technology perimetry; MD = mean deviation; PSD = pattern standard deviation; SAP = standard automated perimetry.

Table 2.
Regression analysis between average GC-IPL thickness and central mean sensitivity in SAP C24-2, FDT C24-2, SAP C10-2 with logarithmic scale
Total Early (<6 months) Late (>6 months)
Log R2 p-value* Log R2 p-value* Log R2 p-value*
Logarithmic-Log R2
SAP C24-2 0.319 0.065 0.024 0.405 0.156 0.550
FDT C24-2 0.313 0.071 0.216 0.927 0.452 0.068
SAP C10-2 0.498 0.003 0.671 0.003 0.539 0.025
Total Early (<6 months) Late (>6 months)
Linear R2 p-value* Linear R2 p-value* Linear R2 p-value*
Logarithmic-linear R2
SAP C24-2 0.317 0.067 0.031 0.408 0.142 0.585
FDT C24-2 0.301 0.083 0.215 0.905 0.450 0.069
SAP C10-2 0.496 0.003 0.667 0.003 0.538 0.025

GC-IPL = ganglion cell inner plexiform layer; SAP = standard automated perimetry; FDT = frequency doubling technology perimetry.

* Regression analysis.

Table 3.
Regression analysis between average GC-IPL thickness and central mean sensitivity in SAP C24-2, FDT C24-2, SAP C10-2 with antilogarithmic scale
Total
Early (<6 months)
Late (>6 months)
Log R2 p-value* Log R2 p-value* Log R2 p-value*
AntiLogarithmic-Log R2
  SAP C24-2 0.268 0.125 0.224 0.387 0.374 0.138
 FDT C24-2 0.229 0.193 0.217 0.403 0.284 0.268
 SAP C10-2 0.487 0.003 0.665 0.003 0.537 0.026
Total Early (<6 months) Late (>6 months)
Linear R2 p-value* Linear R2 p-value* Linear R2 p-value*
AntiLogarithmic-Linear R2
 SAP C24-2 0.270 0.122 0.024 0.387 0.368 0.145
 FDT C24-2 0.222 0.207 0.213 0.412 0.275 0.285
 SAP C10-2 0.486 0.003 0.661 0.003 0.538 0.026

GC-IPL = ganglion cell inner plexiform layer; SAP = standard automated perimetry; FDT = frequency doubling technology perimetry.

* Regression analysis.

TOOLS
Similar articles