Abstract
Purpose
To identify the correspondence between the central sensitivity of several visual field (VF) tests and ganglion cell inner plexiform layer (GC-IPL) thickness in early glaucoma patients with parafoveal scotoma.
Methods
Fifty-seven eyes from 57 patients with glaucomatous optic neuropathy and parafoveal scotoma were analyzed using the standard automated perimetry (SAP) C10-2 test, the SAP C24-2 test, and the frequency doubling technology perimetry (FDT) C24-2 test. The correlation between the VF central sensitivity and the GC-IPL thickness from macular scans via optical co-herence tomography was analyzed.
Results
The central sensitivity was 27.51 ± 5.43 dB, 27.39 ± 5.05 dB, and 22.09 ± 5.08 dB for SAP C24-2, SAP C10-2, and FDT C24-2, respectively. Mean GC-IPL thickness was 70.2 ± 8.5 μ m. Using regression analysis, the value of log R2 between the loga-rithmic central sensitivity and GC-IPL thickness was 0.498, and the linear R2 between the antilogarithmic central sensitivity and GC-IPL thickness in SAP C10-2 was 0.486, and both were statistically significant ( p < 0.05). This relationship was stronger in early glaucoma patients compared to late glaucoma patients using SAP C10-2.
References
1. Hood DC, Kardon RH. A framework for comparing structural and functional measures of glaucomatous damage. Prog Retin Eye Res. 2007; 26:688–710.
2. Quigley HA, Addicks EM, Green WR. Optic nerve damage in hu-man glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy. Arch Ophthalmol. 1982; 100:135–46.
3. Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol. 1989; 107:453–64.
4. Anderson RS. The psychophysics of glaucoma: improving the structure/function relationship. Prog Retin Eye Res. 2006; 25:79–97.
5. . . Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci. 2000; 41:741–8.
6. Johnson CA. Selective versus nonselective losses in glaucoma. J Glaucoma. 1994; (3 Suppl 1):S32–44.
7. Johnson CA. The Glenn A. Fry Award Lecture. Early losses of vis-ual function in glaucoma. Optom Vis Sci. 1995; 72:359–70.
8. Jung KI, Park HY, Park CK. Characteristics of optic disc morphol-ogy in glaucoma patients with parafoveal scotoma compared to pe-ripheral scotoma. Invest Ophthalmol Vis Sci. 2012; 53:4813–20.
9. Traynis I, De Moraes CG, Raza AS. . Prevalence and nature of early glaucomatous defects in the central 10° of the visual field. JAMA Ophthalmol. 2014; 132:291–7.
10. Shin HY, Park HY, Jung KI. . Glaucoma diagnostic ability of ganglion cell-inner plexiform layer thickness differs according to the location of visual field loss. Ophthalmology. 2014; 121:93–9.
11. Park HY, Hwang BE, Shin HY, Park CK. Clinical clues to predict the presence of parafoveal scotoma on humphrey 10-2 visual field using a humphrey 24-2 visual field. Am J Ophthalmol. 2016; 161:150–9.
12. Park SC, Kung Y, Su D. . Parafoveal scotoma progression in glaucoma: humphrey 10-2 versus 24-2 visual field analysis. Ophthalmology. 2013; 120:1546–50.
13. Hangai M, Ikeda HO, Akagi T, Yoshimura N. Paracentral scotoma in glaucoma detected by 10-2 but not by 24-2 perimetry. Jpn J Ophthalmol. 2014; 58:188–96.
14. Brusini P, Salvetat ML, Zeppieri M, Parisi L. Frequency doubling technology perimetry with the Humphrey Matrix 30-2 test. J Glaucoma. 2006; 15:77–83.
15. Medeiros FA, Sample PA, Zangwill LM. . A statistical ap-proach to the evaluation of covariate effects on the receiver operat-ing characteristic curves of diagnostic tests in glaucoma. Invest Ophthalmol Vis Sci. 2006; 47:2520–7.
16. Racette L, Medeiros FA, Zangwill LM. . Diagnostic accuracy of the Matrix 24-2 and original N-30 frequency-doubling technol-ogy tests compared with standard automated perimetry. Invest Ophthalmol Vis Sci. 2008; 49:954–60.
Table 1.
Table 2.
Total | Early (<6 months) | Late (>6 months) | ||||
---|---|---|---|---|---|---|
Log R2 | p-value* | Log R2 | p-value* | Log R2 | p-value* | |
Logarithmic-Log R2 | ||||||
SAP C24-2 | 0.319 | 0.065 | 0.024 | 0.405 | 0.156 | 0.550 |
FDT C24-2 | 0.313 | 0.071 | 0.216 | 0.927 | 0.452 | 0.068 |
SAP C10-2 | 0.498 | 0.003 | 0.671 | 0.003 | 0.539 | 0.025 |
Total | Early (<6 months) | Late (>6 months) | ||||
---|---|---|---|---|---|---|
Linear R2 | p-value* | Linear R2 | p-value* | Linear R2 | p-value* | |
Logarithmic-linear R2 | ||||||
SAP C24-2 | 0.317 | 0.067 | 0.031 | 0.408 | 0.142 | 0.585 |
FDT C24-2 | 0.301 | 0.083 | 0.215 | 0.905 | 0.450 | 0.069 |
SAP C10-2 | 0.496 | 0.003 | 0.667 | 0.003 | 0.538 | 0.025 |
Table 3.
Total |
Early (<6 months) |
Late (>6 months) |
||||
---|---|---|---|---|---|---|
Log R2 | p-value* | Log R2 | p-value* | Log R2 | p-value* | |
AntiLogarithmic-Log R2 | ||||||
SAP C24-2 | 0.268 | 0.125 | 0.224 | 0.387 | 0.374 | 0.138 |
FDT C24-2 | 0.229 | 0.193 | 0.217 | 0.403 | 0.284 | 0.268 |
SAP C10-2 | 0.487 | 0.003 | 0.665 | 0.003 | 0.537 | 0.026 |
Total | Early (<6 months) | Late (>6 months) | ||||
---|---|---|---|---|---|---|
Linear R2 | p-value* | Linear R2 | p-value* | Linear R2 | p-value* | |
AntiLogarithmic-Linear R2 | ||||||
SAP C24-2 | 0.270 | 0.122 | 0.024 | 0.387 | 0.368 | 0.145 |
FDT C24-2 | 0.222 | 0.207 | 0.213 | 0.412 | 0.275 | 0.285 |
SAP C10-2 | 0.486 | 0.003 | 0.661 | 0.003 | 0.538 | 0.026 |