Journal List > J Korean Ophthalmol Soc > v.58(2) > 1010698

Lee, Han, and Choi: The Association between Corneal Biomechanical Properties and Initial Visual Field Defect Pattern in Normal Tension Glaucoma

Abstract

Purpose

To investigate the association between corneal biomechanical properties and initial visual field defect pattern in normal tension glaucoma using an Ocular Response Analyzer (ORA; Reichert Instruments, Depew, NY, USA).

Methods

Forty-one patients with normal tension glaucoma were divided into 2 subgroups, 21 patients with initial paracentral scotomas and 20 patients with initial peripheral scotomas. The corneal biomechanical properties of corneal hysteresis (CH), cor-neal resistance factor (CRF), Goldmann-correlated intraocular pressure (IOPg), corneal-compensated IOP (IOPcc) measured by the ORA, central corneal thickness, and Goldmann applanation tonometry were comparatively analyzed between the 2 groups.

Results

The patients with initial peripheral scotomas were significantly younger than those with initial paracentral scotomas (49.45 ± 13.33 years vs. 58.14 ± 12.49 years, p = 0.035) and showed more myopia (-2.42 ± 2.22 diopter vs. -0.89 ± 2.22 diopter, p = 0.034). The mean CRF was significantly lower in the initial paracentral scotoma group than in the initial peripheral scotoma group. (9.45 ± 1.95 mmHg vs. 10.58 ± 2.05 mmHg; p = 0.041). No significant difference in CH, IOPg, or IOPcc was seen between the groups.

Conclusions

CRF was significantly different between the initial paracentral scotoma group and initial peripheral scotoma group in normal tension glaucoma. Thus, CRF may be useful to predict initial central field loss in normal tension glaucoma.

References

1. Drance S, Anderson DR, Schulzer M; Collaborative Normal- Tension Glaucoma Study Group. Risk factors for progression of visual field abnormalities in normal-tension glaucoma. Am J Ophthalmol. 2001; 131:699–708.
crossref
2. Grødum K, Heijl A, Bengtsson B.Refractive error and glaucoma. Acta Ophthalmol Scand. 2001; 79:560–6.
crossref
3. Nakagami T, Yamazaki Y, Hayamizu F. Prognostic factors for pro-gression of visual field damage in patients with normal-tension glaucoma. Jpn J Ophthalmol. 2006; 50:38–43.
crossref
4. Ramli N, Nurull BS, Hairi NN, Mimiwati Z. Low nocturnal ocular perfusion pressure as a risk factor for normal tension glaucoma. Prev Med. 2013; 57(Suppl):S47–9.
crossref
5. Liu J, Roberts CJ. Influence of corneal biomechanical properties on intraocular pressure measurement: quantitative analysis. J Cataract Refract Surg. 2005; 31:146–55.
6. Whitacre MM, Stein R. Sources of error with use of Goldmann- type tonometers. Surv Ophthalmol. 1993; 38:1–30.
7. Francis BA, Hsieh A, Lai MY. . Effects of corneal thickness, corneal curvature, and intraocular pressure level on Goldmann ap-planation tonometry and dynamic contour tonometry. Ophthalmology. 2007; 114:20–6.
crossref
8. Choi HJ, Kim DM, Hwang SS. Relationship between central cor-neal thickness and localized retinal nerve fiber layer defect in nor-mal-tension glaucoma. J Glaucoma. 2006; 15:120–3.
crossref
9. Copt RP, Thomas R, Mermoud A. Corneal thickness in ocular hy-pertension, primary open-angle glaucoma, and normal tension glaucoma. Arch Ophthalmol. 1999; 117:14–6.
crossref
10. Herndon LW, Weizer JS, Stinnett SS. Central corneal thickness as a risk factor for advanced glaucoma damage. Arch Ophthalmol. 2004; 122:17–21.
crossref
11. Medeiros FA, Sample PA, Zangwill LM. . Corneal thickness as a risk factor for visual field loss in patients with preperimetric glau-comatous optic neuropathy. Am J Ophthalmol. 2003; 136:805–13.
crossref
12. Congdon NG, Broman AT, Bandeen-Roche K. . Central cor-neal thickness and corneal hysteresis associated with glaucoma damage. Am J Ophthalmol. 2006; 141:868–75.
crossref
13. De Moraes CV, Hill V, Tello C. . Lower corneal hysteresis is as-sociated with more rapid glaucomatous visual field progression. J Glaucoma. 2012; 21:209–13.
crossref
14. Medeiros FA, Meira-Freitas D, Lisboa R. . Corneal hysteresis as a risk factor for glaucoma progression: a prospective longi-tudinal study. Ophthalmology. 2013; 120:1533–40.
crossref
15. Nah YS, Seong GJ, Kim CY. Visual function and quality of life in Korean patients with glaucoma. Korean J Ophthalmol. 2002; 16:70–4.
crossref
16. Araie M, Yamagami J, Suziki Y. Visual field defects in normal-tension and high-tension glaucoma. Ophthalmology. 1993; 100:1808–14.
crossref
17. Koseki N, Araie M, Suzuki Y, Yamagami J. Visual field damage proximal to fixation in normal- and high-tension glaucoma eyes. Jpn J Ophthalmol. 1995; 39:274–83.
18. Ahrlich KG, De Moraes CG, Teng CC. . Visual field pro-gression differences between normal-tension and exfoliative high- tension glaucoma. Invest Ophthalmol Vis Sci. 2010; 51:1458–63.
19. Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg. 2005; 31:156–62.
crossref
20. Sullivan-Mee M, Billingsley SC, Patel AD. . Ocular Response Analyzer in subjects with and without glaucoma. Optom Vis Sci. 2008; 85:463–70.
crossref
21. Shah S, Laiquzzaman M, Mantry S, Cunliffe I. Ocular response an-alyser to assess hysteresis and corneal resistance factor in low ten-sion, open angle glaucoma and ocular hypertension. Clin Experiment Ophthalmol. 2008; 36:508–13.
crossref
22. Argus WA. Ocular hypertension and central corneal thickness. Ophthalmology. 1995; 102:1810–2.
crossref
23. Kirwan C, O'Keefe M, Lanigan B.Corneal hysteresis and intra-ocular pressure measurement in children using the reichert ocular response analyzer. Am J Ophthalmol. 2006; 142:990–2.
crossref
24. Kolker AE. Visual prognosis in advanced glaucoma: a comparison of medical and surgical therapy for retention of vision in 101 eyes with advanced glaucoma. Trans Am Ophthalmol Soc. 1977; 75:539–55.
25. Park SC, De Moraes CG, Teng CC. . Initial parafoveal versus peripheral scotomas in glaucoma: risk factors and visual field characteristics. Ophthalmology. 2011; 118:1782–9.
crossref
26. Kang JW, Park B, Cho BJ. Comparison of risk factors for initial central scotoma versus initial peripheral scotoma in normal-tension glaucoma. Korean J Ophthalmol. 2015; 29:102–8.
crossref
27. Cho HK, Lee J, Lee M, Kee C. Initial central scotomas vs periph-eral scotomas in normal-tension glaucoma: clinical characteristics and progression rates. Eye (Lond). 2014; 28:303–11.
crossref
28. Chihara E, Tanihara H. Parameters associated with papillomacular bundle defects in glaucoma. Graefes Arch Clin Exp Ophthalmol. 1992; 230:511–7.
crossref
29. Chihara E, Sawada A. Atypical nerve fiber layer defects in high myopes with high-tension glaucoma. Arch Ophthalmol. 1990; 108:228–32.
crossref
30. Chihara E, Honda Y. Multiple defects in the retinal nerve fiber layer in glaucoma. Graefes Arch Clin Exp Ophthalmol. 1992; 230:201–5.
crossref
31. Kimura Y, Hangai M, Morooka S. . Retinal nerve fiber layer defects in highly myopic eyes with early glaucoma. Invest Ophthalmol Vis Sci. 2012; 53:6472–8.
crossref
32. Ohno-Matsui K, Shimada N, Yasuzumi K. . Long-term devel-opment of significant visual field defects in highly myopic eyes. Am J Ophthalmol. 2011; 152:256–65.e1.
crossref
33. Kang BW, Ji YS, Park SW. Analysis of factors related of location of initial visual field defect in normal tension glaucoma. J Korean Ophthalmol Soc. 2011; 52:1478–84.
crossref

Table 1.
Comparison of corneal biomechanical parameters in normal subjects and NTG patients
Parameters NTG patients (n = 41) Normal subjects (n = 40) p-value*
Age (years) 53.9 ± 13.48 48.38 ± 13.21 0.066
Untreated IOP (mm Hg) 14.02 ± 3.08 14.30 ± 3.00 0.684
Spherical equivalent (diopter) -1.51 ± 2.31 -1.68 ± 2.15 0.746
Axial length (mm) 24.85 ± 1.59 24.59 ± 1.27 0.483
CCT (μ m) 551.48 ± 35.73 551.65 ± 34.52 0.984
IOPg (mmHg) 15.08 ± 3.48 16.53 ± 3.87 0.079
IOPcc (mmHg) 14.76 ± 3.11 15.65 ± 2.96 0.186
CRF (mmHg) 10.00 ± 2.06 11.72 ± 2.10 <0.001
CH (mmHg) 10.38 ± 1.76 11.55 ± 1.57 <0.001

Values are presented as mean ± SD unless otherwise indicated.

NTG = normal tension glaucoma; IOP = intraocular pressure; CCT = central corneal thickness; IOPg = Goldman corrected IOP; IOPcc = corneal compensated IOP; CRF= corneal resistant factor; CH = corneal hysteresis.

* p-value based on Student t-test.

Table 2.
Comparison of clinical characteristics and the perimetric parameters in NTG patients between initial paracentral scotoma and initial peripheral scotoma group
Parameters Initial paracentral scotoma (n = 21) Initial peripheral scotoma (n = 20) p-value
Age (years) 58.14 ± 12.49 49.45 ± 13.33 0.035*
Sex (Male:Female) 6:15 9:11 0.275
Untreated IOP (mmHg) 13.91 ± 3.05 14.15 ± 3.18 0.875*
Spherical equivalent (diopter) -0.89 ± 2.22 -2.42 ± 2.22 0.034*
logMAR visual acuity 0.067 ± 0.12 0.035 ± 0.75 0.354*
Axial length (mm) 24.35 ± 1.21 25.32 ± 1.80 0.121*
Family history of glaucoma (n, %) 1 (4.8) 2 (10.0) 0.520
Hypertension (n, %) 6 (28.6) 5 (25.0) 0.796
DM (n, %) 1 (4.8) 2 (10.0) 0.520
MD (dB) -1.27 ± 1.51 -2.39 ± 0.50 0.037*
PSD (dB) 2.78 ± 1.40 3.39 ± 1.56 0.050*

Values are presented as mean ± SD unless otherwise indicated.

NTG = normal tension glaucoma; IOP = intraocular pressure; DM = diabetes mellitus; MD = mean deviation; PSD = pattern standard deviation.

* p-value based on Mann-Whitney test

Chi-square test; Fisher’s exact test.

Table 3.
Comparison of the relationship between corneal biomechanical properties and initial visual field defect pattern in NTG
Parameters Initial paracentral scotoma (n = 21) Initial peripheral scotoma (n = 20) p-value*
CCT (μ m) 544.00 ± 32.99 558.53 ± 37.73 0.109
IOPg (mmHg) 14.75 ± 3.51 15.42 ± 3.50 0.442
IOPcc (mmHg) 14.19 ± 2.95 15.36 ± 3.08 0.220
CRF (mmHg) 9.45 ± 1.95 10.58 ± 2.05 0.041
CH (mmHg) 10.06 ± 1.74 10.71 ± 1.77 0.134

Values are presented as mean ± SD unless otherwise indicated.

NTG = normal tension glaucoma; CCT = central corneal thickness; IOPg = Goldman corrected intraocular pressure; IOPcc = corneal com-pensated intraocular pressure; CRF= corneal resistant factor; CH = corneal hysteresis.

* p-value based on Mann-Whitney test.

Table 4.
Binary logistic regression testing the association between all baseline and intercurrent factors with initial paracentral scotomas
Parameters Univariable model*
Multivariable model
OR (95% CI) p-value OR (95% CI) p-value
Age (years) 1.06 (1.00-1.12) 0.051 - -
Sex (female) 2.05 (0.56-7.46) 0.278 - -
Untreated IOP (mmHg) 0.97 (0.80-1.19) 0.796 - -
Spherical equivalent (diopter) 1.36 (0.98-1.87) 0.063 - -
Axial length 0.65 (0.37-1.14) 0.135 - -
Family history of glaucoma 0.45 (0.04-5.39) 0.529 - -
Presence of hypertension 1.20 (0.30-4.80) 0.797 - -
Presence of DM 0.45 (0.04-5.39) 0.529 - -
VF MD (dB) 1.66 (1.05-2.75) 0.032 1.77 (1.05-3.00) 0.033
VF PSD (dB) 0.74 (0.47-1.18) 0.209 - -
CCT (μ m) 0.99 (0.97-1.01) 0.246 - -
IOPg (mmHg) 0.95 (0.79-1.13) 0.538 - -
IOPcc (mmHg) 0.87 (0.71-1.08) 0.217 - -
CRF (mmHg) 0.71 (0.50-0.99) 0.049 0.69 (0.48-0.99) 0.047
CH (mmHg) 0.80 (0.55-1.16) 0.239 - -

OR = odds ratio; CI = confidence interval; IOP = intraocular pressure; DM = diabetes mellitus; VF = visual field; MD = mean deviation; PSD = pattern standard deviation; CCT = central corneal thickness; IOPg = Goldman corrected IOP; IOPcc = corneal compensated IOP; CRF= corneal resistant factor; CH = corneal hysteresis.

* Univariate model including each variable independently

Stepwise multivariate model including visual field mean deviation and corneal resist-ance factor along with the other clinical variables.

TOOLS
Similar articles