Abstract
Purpose
To investigate the association between corneal biomechanical properties and initial visual field defect pattern in normal tension glaucoma using an Ocular Response Analyzer (ORA; Reichert Instruments, Depew, NY, USA).
Methods
Forty-one patients with normal tension glaucoma were divided into 2 subgroups, 21 patients with initial paracentral scotomas and 20 patients with initial peripheral scotomas. The corneal biomechanical properties of corneal hysteresis (CH), cor-neal resistance factor (CRF), Goldmann-correlated intraocular pressure (IOPg), corneal-compensated IOP (IOPcc) measured by the ORA, central corneal thickness, and Goldmann applanation tonometry were comparatively analyzed between the 2 groups.
Results
The patients with initial peripheral scotomas were significantly younger than those with initial paracentral scotomas (49.45 ± 13.33 years vs. 58.14 ± 12.49 years, p = 0.035) and showed more myopia (-2.42 ± 2.22 diopter vs. -0.89 ± 2.22 diopter, p = 0.034). The mean CRF was significantly lower in the initial paracentral scotoma group than in the initial peripheral scotoma group. (9.45 ± 1.95 mmHg vs. 10.58 ± 2.05 mmHg; p = 0.041). No significant difference in CH, IOPg, or IOPcc was seen between the groups.
References
1. Drance S, Anderson DR, Schulzer M; Collaborative Normal- Tension Glaucoma Study Group. Risk factors for progression of visual field abnormalities in normal-tension glaucoma. Am J Ophthalmol. 2001; 131:699–708.
2. Grødum K, Heijl A, Bengtsson B.Refractive error and glaucoma. Acta Ophthalmol Scand. 2001; 79:560–6.
3. Nakagami T, Yamazaki Y, Hayamizu F. Prognostic factors for pro-gression of visual field damage in patients with normal-tension glaucoma. Jpn J Ophthalmol. 2006; 50:38–43.
4. Ramli N, Nurull BS, Hairi NN, Mimiwati Z. Low nocturnal ocular perfusion pressure as a risk factor for normal tension glaucoma. Prev Med. 2013; 57(Suppl):S47–9.
5. Liu J, Roberts CJ. Influence of corneal biomechanical properties on intraocular pressure measurement: quantitative analysis. J Cataract Refract Surg. 2005; 31:146–55.
6. Whitacre MM, Stein R. Sources of error with use of Goldmann- type tonometers. Surv Ophthalmol. 1993; 38:1–30.
7. Francis BA, Hsieh A, Lai MY. . Effects of corneal thickness, corneal curvature, and intraocular pressure level on Goldmann ap-planation tonometry and dynamic contour tonometry. Ophthalmology. 2007; 114:20–6.
8. Choi HJ, Kim DM, Hwang SS. Relationship between central cor-neal thickness and localized retinal nerve fiber layer defect in nor-mal-tension glaucoma. J Glaucoma. 2006; 15:120–3.
9. Copt RP, Thomas R, Mermoud A. Corneal thickness in ocular hy-pertension, primary open-angle glaucoma, and normal tension glaucoma. Arch Ophthalmol. 1999; 117:14–6.
10. Herndon LW, Weizer JS, Stinnett SS. Central corneal thickness as a risk factor for advanced glaucoma damage. Arch Ophthalmol. 2004; 122:17–21.
11. Medeiros FA, Sample PA, Zangwill LM. . Corneal thickness as a risk factor for visual field loss in patients with preperimetric glau-comatous optic neuropathy. Am J Ophthalmol. 2003; 136:805–13.
12. Congdon NG, Broman AT, Bandeen-Roche K. . Central cor-neal thickness and corneal hysteresis associated with glaucoma damage. Am J Ophthalmol. 2006; 141:868–75.
13. De Moraes CV, Hill V, Tello C. . Lower corneal hysteresis is as-sociated with more rapid glaucomatous visual field progression. J Glaucoma. 2012; 21:209–13.
14. Medeiros FA, Meira-Freitas D, Lisboa R. . Corneal hysteresis as a risk factor for glaucoma progression: a prospective longi-tudinal study. Ophthalmology. 2013; 120:1533–40.
15. Nah YS, Seong GJ, Kim CY. Visual function and quality of life in Korean patients with glaucoma. Korean J Ophthalmol. 2002; 16:70–4.
16. Araie M, Yamagami J, Suziki Y. Visual field defects in normal-tension and high-tension glaucoma. Ophthalmology. 1993; 100:1808–14.
17. Koseki N, Araie M, Suzuki Y, Yamagami J. Visual field damage proximal to fixation in normal- and high-tension glaucoma eyes. Jpn J Ophthalmol. 1995; 39:274–83.
18. Ahrlich KG, De Moraes CG, Teng CC. . Visual field pro-gression differences between normal-tension and exfoliative high- tension glaucoma. Invest Ophthalmol Vis Sci. 2010; 51:1458–63.
19. Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg. 2005; 31:156–62.
20. Sullivan-Mee M, Billingsley SC, Patel AD. . Ocular Response Analyzer in subjects with and without glaucoma. Optom Vis Sci. 2008; 85:463–70.
21. Shah S, Laiquzzaman M, Mantry S, Cunliffe I. Ocular response an-alyser to assess hysteresis and corneal resistance factor in low ten-sion, open angle glaucoma and ocular hypertension. Clin Experiment Ophthalmol. 2008; 36:508–13.
23. Kirwan C, O'Keefe M, Lanigan B.Corneal hysteresis and intra-ocular pressure measurement in children using the reichert ocular response analyzer. Am J Ophthalmol. 2006; 142:990–2.
24. Kolker AE. Visual prognosis in advanced glaucoma: a comparison of medical and surgical therapy for retention of vision in 101 eyes with advanced glaucoma. Trans Am Ophthalmol Soc. 1977; 75:539–55.
25. Park SC, De Moraes CG, Teng CC. . Initial parafoveal versus peripheral scotomas in glaucoma: risk factors and visual field characteristics. Ophthalmology. 2011; 118:1782–9.
26. Kang JW, Park B, Cho BJ. Comparison of risk factors for initial central scotoma versus initial peripheral scotoma in normal-tension glaucoma. Korean J Ophthalmol. 2015; 29:102–8.
27. Cho HK, Lee J, Lee M, Kee C. Initial central scotomas vs periph-eral scotomas in normal-tension glaucoma: clinical characteristics and progression rates. Eye (Lond). 2014; 28:303–11.
28. Chihara E, Tanihara H. Parameters associated with papillomacular bundle defects in glaucoma. Graefes Arch Clin Exp Ophthalmol. 1992; 230:511–7.
29. Chihara E, Sawada A. Atypical nerve fiber layer defects in high myopes with high-tension glaucoma. Arch Ophthalmol. 1990; 108:228–32.
30. Chihara E, Honda Y. Multiple defects in the retinal nerve fiber layer in glaucoma. Graefes Arch Clin Exp Ophthalmol. 1992; 230:201–5.
31. Kimura Y, Hangai M, Morooka S. . Retinal nerve fiber layer defects in highly myopic eyes with early glaucoma. Invest Ophthalmol Vis Sci. 2012; 53:6472–8.
Table 1.
Parameters | NTG patients (n = 41) | Normal subjects (n = 40) | p-value* |
---|---|---|---|
Age (years) | 53.9 ± 13.48 | 48.38 ± 13.21 | 0.066 |
Untreated IOP (mm Hg) | 14.02 ± 3.08 | 14.30 ± 3.00 | 0.684 |
Spherical equivalent (diopter) | -1.51 ± 2.31 | -1.68 ± 2.15 | 0.746 |
Axial length (mm) | 24.85 ± 1.59 | 24.59 ± 1.27 | 0.483 |
CCT (μ m) | 551.48 ± 35.73 | 551.65 ± 34.52 | 0.984 |
IOPg (mmHg) | 15.08 ± 3.48 | 16.53 ± 3.87 | 0.079 |
IOPcc (mmHg) | 14.76 ± 3.11 | 15.65 ± 2.96 | 0.186 |
CRF (mmHg) | 10.00 ± 2.06 | 11.72 ± 2.10 | <0.001 |
CH (mmHg) | 10.38 ± 1.76 | 11.55 ± 1.57 | <0.001 |
Table 2.
Parameters | Initial paracentral scotoma (n = 21) | Initial peripheral scotoma (n = 20) | p-value |
---|---|---|---|
Age (years) | 58.14 ± 12.49 | 49.45 ± 13.33 | 0.035* |
Sex (Male:Female) | 6:15 | 9:11 | 0.275† |
Untreated IOP (mmHg) | 13.91 ± 3.05 | 14.15 ± 3.18 | 0.875* |
Spherical equivalent (diopter) | -0.89 ± 2.22 | -2.42 ± 2.22 | 0.034* |
logMAR visual acuity | 0.067 ± 0.12 | 0.035 ± 0.75 | 0.354* |
Axial length (mm) | 24.35 ± 1.21 | 25.32 ± 1.80 | 0.121* |
Family history of glaucoma (n, %) | 1 (4.8) | 2 (10.0) | 0.520‡ |
Hypertension (n, %) | 6 (28.6) | 5 (25.0) | 0.796† |
DM (n, %) | 1 (4.8) | 2 (10.0) | 0.520‡ |
MD (dB) | -1.27 ± 1.51 | -2.39 ± 0.50 | 0.037* |
PSD (dB) | 2.78 ± 1.40 | 3.39 ± 1.56 | 0.050* |
Table 3.
Parameters | Initial paracentral scotoma (n = 21) | Initial peripheral scotoma (n = 20) | p-value* |
---|---|---|---|
CCT (μ m) | 544.00 ± 32.99 | 558.53 ± 37.73 | 0.109 |
IOPg (mmHg) | 14.75 ± 3.51 | 15.42 ± 3.50 | 0.442 |
IOPcc (mmHg) | 14.19 ± 2.95 | 15.36 ± 3.08 | 0.220 |
CRF (mmHg) | 9.45 ± 1.95 | 10.58 ± 2.05 | 0.041 |
CH (mmHg) | 10.06 ± 1.74 | 10.71 ± 1.77 | 0.134 |
Table 4.
Parameters |
Univariable model* |
Multivariable model† |
||
---|---|---|---|---|
OR (95% CI) | p-value | OR (95% CI) | p-value | |
Age (years) | 1.06 (1.00-1.12) | 0.051 | - | - |
Sex (female) | 2.05 (0.56-7.46) | 0.278 | - | - |
Untreated IOP (mmHg) | 0.97 (0.80-1.19) | 0.796 | - | - |
Spherical equivalent (diopter) | 1.36 (0.98-1.87) | 0.063 | - | - |
Axial length | 0.65 (0.37-1.14) | 0.135 | - | - |
Family history of glaucoma | 0.45 (0.04-5.39) | 0.529 | - | - |
Presence of hypertension | 1.20 (0.30-4.80) | 0.797 | - | - |
Presence of DM | 0.45 (0.04-5.39) | 0.529 | - | - |
VF MD (dB) | 1.66 (1.05-2.75) | 0.032 | 1.77 (1.05-3.00) | 0.033 |
VF PSD (dB) | 0.74 (0.47-1.18) | 0.209 | - | - |
CCT (μ m) | 0.99 (0.97-1.01) | 0.246 | - | - |
IOPg (mmHg) | 0.95 (0.79-1.13) | 0.538 | - | - |
IOPcc (mmHg) | 0.87 (0.71-1.08) | 0.217 | - | - |
CRF (mmHg) | 0.71 (0.50-0.99) | 0.049 | 0.69 (0.48-0.99) | 0.047 |
CH (mmHg) | 0.80 (0.55-1.16) | 0.239 | - | - |
OR = odds ratio; CI = confidence interval; IOP = intraocular pressure; DM = diabetes mellitus; VF = visual field; MD = mean deviation; PSD = pattern standard deviation; CCT = central corneal thickness; IOPg = Goldman corrected IOP; IOPcc = corneal compensated IOP; CRF= corneal resistant factor; CH = corneal hysteresis.