Journal List > J Korean Ophthalmol Soc > v.58(2) > 1010697

Park and Chun: Relationship between Binocular Visual Function and Quality of Life in Bilateral Normal Tension Glaucoma Patients

Abstract

Purpose

To analyze the effect of stereopsis and contrast sensitivity on the quality of life and to evaluate the relationship be-tween integrated binocular visual field (IVF) and binocular visual function in bilateral normal tension glaucoma (NTG) patients.

Methods

Stereopsis and contrast sensitivity tests were performed and compared among 44 NTG patients and 32 normal subjects. The IVF was integrated using the best location method. The correlation between visual function and subscales of the National Eye Institute Visual Function Questionnaire 25 (NEI VFQ-25) was evaluated using univariate linear regression.

Results

Stereopsis and contrast sensitivity for the bilateral NTG patients were decreased compared to the normal controls. Stereopsis and contrast sensitivity exhibited a significant correlation with social functions related to vision and color vision among subscales of NEI VFQ-25. IVF mean deviation (MD) and better eye MD showed a significant correlation with stereopsis and contrast sensitivity, while worse eye MD showed no association.

Conclusions

Deterioration of stereopsis and contrast sensitivity in NTG patients affects their quality of life related to social func-tions and color vision. Both IVF and better eye MDs are correlated with stereopsis and contrast sensitivity in NTG patients.

References

1. Gutierrez P, Wilson MR, Johnson C. . Influence of glaucoma-tous visual field loss on health-related quality of life. Arch Ophthalmol. 1997; 115:777–84.
crossref
2. Janz NK, Wren PA, Lichter PR. . Quality of life in newly diag-nosed glaucoma patients: The Collaborative Initial Glaucoma Treatment Study. Ophthalmology. 2001; 108:887–97.
3. McKean-Cowdin R, Wang Y, Wu J. . Impact of visual field loss on health-related quality of life in glaucoma: the Los Angeles Latino Eye Study. Ophthalmology. 2008; 115:941–8.e1.
4. Parrish RK 2nd, Gedde SJ, Scott IU. . Visual function and qual-ity of life among patients with glaucoma. Arch Ophthalmol. 1997; 115:1447–55.
crossref
5. Friedman DS, Freeman E, Munoz B. . Glaucoma and mobility performance: the Salisbury Eye Evaluation Project. Ophthalmology. 2007; 114:2232–7.
6. Gupta N, Krishnadev N, Hamstra SJ, Yücel YH. Depth perception deficits in glaucoma suspects. Br J Ophthalmol. 2006; 90:979–81.
crossref
7. Ramulu PY, West SK, Munoz B. . Glaucoma and reading speed: the Salisbury Eye Evaluation project. Arch Ophthalmol. 2009; 127:82–7.
8. McKendrick AM, Sampson GP, Walland MJ, Badcock DR. Contrast sensitivity changes due to glaucoma and normal aging: low-spatial-frequency losses in both magnocellular and parvocel-lular pathways. Invest Ophthalmol Vis Sci. 2007; 48:2115–22.
crossref
9. Sung MS, Park SW. Spatial contrast sensitivity for the diagnosis of glaucoma. Journal of The Korean Glaucoma Society. 2015; 4:14–20.
crossref
10. Chang JH, Chun BY, Shin JP. The stereopic acuity in patients with unilateral or bilateral visual field defects. J Korean Ophthalmol Soc. 2014; 55:734–9.
11. Junemann AG, Horn FK, Martus P, Korth M. The full-field tempo-ral contrast sensitivity test for glaucoma: influence of cataract. Graefes Arch Clin Exp Ophthalmol. 2000; 238:427–32.
12. Klein J, Pierscionek BK, Lauritzen J. . The effect of cataract on early stage glaucoma detection using spatial and temporal contrast sensitivity tests. PLoS One. 2015; 10:e0128681.
crossref
13. Kim CS, Seong GJ, Lee NH. . Prevalence of primary open-angle glaucoma in central South Korea the Namil study. Ophthalmology. 2011; 118:1024–30.
14. Kang BW, Ji YS, Park SW. Analysis of factors related of location of initial visual field defect in normal tenstion glaucoma. J Korean Ophthalmol Soc. 2011; 52:1478–84.
15. Heo JW, Yoon HS, Shin JP. . A validation and reliability study of the Korean version of National Eye Institute Visual Function Questionnaire 25. J Korean Ophthalmol Soc. 2010; 51:1354–67.
crossref
16. Crabb DP, Viswanathan AC, McNaught AI. . Simulating bin-ocular visual field status in glaucoma. Br J Ophthalmol. 1998; 82:1236–41.
crossref
17. Nelson-Quigg JM, Cello K, Johnson CA.Predicting binocular vis-ual field sensitivity from monocular visual field results. Invest Ophthalmol Vis Sci. 2000; 41:2212–21.
18. Chun YS, Park IK. Comparision of mean deviation between in-tegrated binocular visual field and monocular visual field. J Korean Ophthalmol Soc. 2013; 54:919–26.
19. Lee DI, Park IK, Jeong JH, Chun YS. Quality of life according to location of integrated binocular visual field defect in nor-mal-tension-glaucoma patients. J Korean Ophthalmol Soc. 2016; 57:86–97.
crossref
20. Anderson DR. Kist K, editor. The single field printout with Statpac analysis. Automated Static Perimetry. 2nd ed. St. Louis: Mosby;1992. p. chap. 5.
21. Bergua A, Horn FK, Martus P. . Stereoscopic visual evoked po-tentials in normal subjects and patients with open-angle glaucomas. Graefes Arch Clin Exp Ophthalmol. 2004; 242:197–203.
crossref
22. Parisi V. Impaired visual function in glaucoma. Clin Neurophysiol. 2001; 112:351–8.
crossref
23. Derefeldt G, Lennerstrand G, Lundh B. Age variations in normal human contrast sensitivity. Acta Ophthalmol (Copenh). 1979; 57:679–90.
crossref
24. Livingstone MS, Hubel DH. Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J Neurosci. 1987; 7:3416–68.
crossref
25. Maunsell JH, Van Essen DC. Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J Neurophysiol. 1983; 49:1127–47.
crossref
26. Schiller PH. The central visual system. Vision Res. 1986; 26:1351–86.
crossref
27. Klistorner AI, Graham SL. Early magnocellular loss in glaucoma demonstrated using the pseudorandomly stimulated flash visual evoked potential. J Glaucoma. 1999; 8:140–8.
crossref
28. . . Loss of neurons in magnocel-lular and parvocellular layers of the lateral geniculate nucleus in glaucoma. Arch Ophthalmol. 2000; 118:378–84.
29. Yücel YH, Zhang Q, Weinreb RN. . Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog Retin Eye Res. 2003; 22:465–81.
crossref
30. Derrington AM, Lennie P. Spatial and temporal contrast sensitiv-ities of neurones in lateral geniculate nucleus of macaque. J Physiol. 1984; 357:219–40.
crossref

Figure 1.
Integrated visual field (IVF) of normal tension glaucoma. Schematic representation of the left (A), right (B) and IVF by best location (C). VF = visual field; MD = mean deviation; dB = decibels.
jkos-58-171f1.tif
Table 1.
Demographic data for normal tension glaucoma (NTG) and control
NTG (n = 44) Control (n = 32) p-value*
Mean age (years) 59.02 ± 14.47 57.56 ± 14.07 0.672
Gender (male/female) 25/19 22/10 0.297
Visual acuity (logMAR)
  Better eye 0.11 ± 0.11 0.09 ± 0.09 0.568
  Worse eye 0.15 ± 0.11 0.13 ± 0.08 0.607
Intraocular pressure (mmHg)
  Higher eye 14.02 ± 2.66 13.78 ± 2.35 0.683
  Lower eye 12.93 ± 2.64 12.62 ± 2.56 0.614

Values are presented as mean ± standard deviation (SD) unless otherwise indicated.

* p-value by independent t-test.

Table 2.
Clinical data for normal tension glaucoma (NTG) and control
NTG (n = 44) Control (n = 32) p-value*
MD of visual field (dB)
Binocular (IVF) -3.99 ± 6.29 2.29 ± 1.5 <0.001
  Better eye -5.04 ± 6.71 0.97 ± 3.5 <0.001
  Worse eye -9.52 ± 8.39 -0.02 ± 2.4 <0.001
Stereopsis (sec) 174.09 ± 185.18 44.77 ± 11.71 <0.001
Contrast sensitivity test (Photopic, log)
  3 cpd 1.67 ± 0.18 1.76 ± 0.17 0.039
  6 cpd 1.90 ± 0.20 2.03 ± 0.18 0.006
  12 cpd 1.57 ± 0.29 1.82 ± 0.18 <0.001
  18 cpd 1.15 ± 0.25 1.42 ± 0.15 <0.001
Contrast sensitivity test (Mesopic, log)
  3 cpd 1.67 ± 0.20 1.74 ± 0.14 0.129
  6 cpd 1.85 ± 0.20 2.01 ± 0.14 <0.001
  12 cpd 1.49 ± 0.31 1.69 ± 0.18 0.002
  18 cpd 1.04 ±0.27 1.29 ± 0.18 <0.001

Values are presented as mean ± standard deviation (SD) unless otherwise indicated.

MD = mean deviation; dB = decibels; IVF = integrated binocular visual field by best location method; cpd = cycle per degree.

* p-value by independent t-test.

Table 3.
Correlations of National Eye Institute Visual Function Questionnaire (NEI-VFQ-25) subscale score with clinical visual function tests
NEI-VFQ-25 subscale Score Stereopsis Photopic constrast sensitivity test
Mesopic constrast sensitivity test
3 cpd 6 cpd 12 cpd 18 cpd 3 cpd 6 cpd 12 cpd 18 cpd
General health 36.58 -0.25 0.21 0.12 0.28 0.02 0.36 ( p = 0.023*) 0.01 0.35 ( p = 0.026*) 0.04
General VA 66.50 -0.33( p = 0.039*) 0.08 0.03 0.08 -0.01 0.09 0.02 -0.11 -0.09
Ocular pain 80.79 -0.11 0.05 -0.16 -0.01 -0.04 0.14 -0.05 -0.03 0.15
Near acuity 81.70 -0.23 0.10 0.01 0.08 0.02 0.11 0.01 -0.10 0.07
Distance acuity 83.94 -0.35( p = 0.027*) 0.14 0.15 0.16 0.15 0.27 0.04 0.02 0.15
Social functioning 91.46 -0.37 ( p = 0.016*) 0.21 0.28 0.34 ( p = 0.034*) 0.32 ( p = 0.047*) 0.25 0.24 0.22 0.40 ( p = 0.010*)
Mental health 77.59 -0.18 0.12 0.05 0.08 -0.15 0.19 0.04 0.01 0.04
Role difficulties 74.35 -0.29 0.08 0.02 0.11 0.01 0.31 0.15 0.05 0.08
Dependency 88.88 -0.12 -0.03 0.16 0.10 -0.09 0.17 0.13 -0.03 -0.01
Driving 82.01 -0.09 -0.29 0.04 0.01 0.01 -0.14 0.10 0.23 0.28
Color vision 93.90 -0.45 ( p = 0.003*) 0.27 0.28 0.34 ( p = 0.033*) 0.20 0.25 0.25 0.26 0.36 ( p = 0.022*)
Peripheral vision 90.24 -0.21 0.34( p = 0.032* 0.22) 0.24 0.20 0.25 0.26 0.10 0.30
Composite score 82.94 -0.40 ( p= 0.009*) 0.23 0.12 0.20 0.11 0.25 0.12 0.02 0.20

Values are presented as Pearson’s correlation coefficient unless otherwise indicated.

cpd = cycle per degree; VA = visual acuity.

* p-value by Pearson’s correlation coefficient; significance set at <0.05.

Table 4.
Correlation coefficient of a univariate linear regression between visual function test and MDs
R2 Coefficient (95% CI) p-value
Stereopsis (sec)
  IVF MD 0.139 -10.94 (-15.15 to -6.73) 0.013
  Better MD 0.107 -9.02 (-13.04 to -5.00) 0.030
  Worse MD 0.073 -5.97 (-9.25 to -2.69) 0.076
Photopic contrast sensitivity test at 18 cpd
  IVF MD 0.102 0.01 (0.01 to 0.02) 0.036
  Better MD 0.101 0.01 (0.01 to 0.02) 0.038
  Worse MD 0.016 0.00 (0.00 to 0.01) 0.425
Mesopic contrast sensitivity test at 18 cpd
  IVF MD 0.233 0.02 (0.01 to 0.02) 0.001
  Better MD 0.208 0.02 (0.01 to 0.02) 0.002
  Worse MD 0.083 0.01 (0.00 to 0.01) 0.060

MD = mean deviation; CI = confidence interval; IVF = integrated binocular visual field by best location method; cpd = cycle per degree.

TOOLS
Similar articles