Journal List > J Korean Ophthalmol Soc > v.57(6) > 1010612

Lee, Chang, Park, Ohn, and Park: Diagnostic Ability of Macular Ganglion Cell Layer Measurements in Glaucoma Using Swept Source Optical Coherence Tomography

Abstract

Purpose

To evaluate diagnostic ability of macular ganglion cell complex (mGCC), macular ganglion cell inner plexiform layer (mGCIPL) measurements in glaucoma using swept source deep range imaging optical coherence tomography (DRI OCT-1, Topcon Co., Tokyo, Japan).

Methods

From August of 2014 to July of 2015, 109 eyes of 109 subjects were assessed for the average thickness and sectional thickness of both mGCC and mGCIPL to determine whether there exists any significant difference among advanced stage glaucoma group, early stage glaucoma group and normal group in Swept source OCT. Comparisons were also made between the above measurements and circumpapillary retinal nerve fiber layer (cpRNFL) thickness measurements in their diagnostic accuracy, sensitivity, and specificity.

Results

The diagnostic ability of mGCC based-mean thickness value (area under the curve [AUC] = 0.78/ 0.99) in detecting early stage glaucoma group as well as advanced stage group was not significantly different from that of cpRNFL thickness measurement. However, there was a significant difference in thickness between mGCIPL (AUC = 0.70) and cpRNFL in early stage glaucoma groups (p = 0.018). The sensitivities and specificities of mGCC were 0.95/0.97, and those of mGCIPL were 0.92/0.97, respectively.

Conclusions

The two swept source OCT based methods measuring retinal ganglion cell layer thickness appeared to have a good diagnostic accuracy, high sensitivity and specificity in detecting glaucomatous eyes. Nevertheless, of the two methods, mGCC thickness measurement was more efficient in detecting early glaucomatous changes.

References

1. Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA. 2014; 311:1901–11.
2. Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet. 2004; 363:1711–20.
crossref
3. Tatham AJ, Weinreb RN, Medeiros FA. Strategies for improving early detection of glaucoma: the combined structure-function index. Clin Ophthalmol. 2014; 8:611–21.
4. Kerrigan-Baumrind LA, Quigley HA, Pease ME, et al. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci. 2000; 41:741–8.
5. Guedes V, Schuman JS, Hertzmark E, et al. Optical coherence abdominal measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. Ophthalmology. 2003; 110:177–89.
6. Lisboa R, Leite MT, Zangwill LM, et al. Diagnosing preperimetric glaucoma with spectral domain optical coherence tomography. Ophthalmology. 2012; 119:2261–9.
crossref
7. Cho JW, Sung KR, Hong JT, et al. Detection of glaucoma by abdominal domain-scanning laser ophthalmoscopy/optical coherence abdominal (SD-SLO/OCT) and time domain optical coherence tomography. J Glaucoma. 2011; 20:15–20.
8. Sung KR, Kim JS, Wollstein G, et al. Imaging of the retinal nerve fibre layer with spectral domain optical coherence tomography for glaucoma diagnosis. Br J Ophthalmol. 2011; 95:909–14.
crossref
9. Jeoung JW, Park KH. Comparison of Cirrus OCT and Stratus OCT on the ability to detect localized retinal nerve fiber layer defects in preperimetric glaucoma. Invest Ophthalmol Vis Sci. 2010; 51:938–45.
crossref
10. Seong M, Sung KR, Choi EH, et al. Macular and peripapillary abdominall nerve fiber layer measurements by spectral domain optical abdominal tomography in normal-tension glaucoma. Invest Ophthalmol Vis Sci. 2010; 51:1446–52.
11. Schulze A, Lamparter J, Pfeiffer N, et al. Diagnostic ability of abdominall ganglion cell complex, retinal nerve fiber layer, and optic nerve head measurements by Fourier-domain optical coherence tomography. Graefes Arch Clin Exp Ophthalmol. 2011; 249:1039–45.
12. Garas A, Vargha P, Holló G. Diagnostic accuracy of nerve fibre layer, macular thickness and optic disc measurements made with the RTVue-100 optical coherence tomograph to detect glaucoma. Eye (Lond). 2011; 25:57–65.
crossref
13. Yang Z, Tatham AJ, Weinreb RN, et al. Diagnostic ability of abdominal ganglion cell inner plexiform layer measurements in glaucoma using swept source and spectral domain optical coherence tomography. PLoS One. 2015; 10:e0125957.
14. Hodapp E, Parrish RK, Anderson DR. Clinical decisions in glaucoma. St. Louis: The CV Mosby Co.;1993. p. 52–61.
15. Zeimer R, Asrani S, Zou S, et al. Quantitative detection of abdominaltous damage at the posterior pole by retinal thickness mapping. A pilot study. Ophthalmology. 1998; 105:224–31.
16. Greenfield DS, Bagga H, Knighton RW. Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography. Arch Ophthalmol. 2003; 121:41–6.
crossref
17. Lederer DE, Schuman JS, Hertzmark E, et al. Analysis of macular volume in normal and glaucomatous eyes using optical coherence tomography. Am J Ophthalmol. 2003; 135:838–43.
crossref
18. Leung CK, Chan WM, Yung WH, et al. Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study. Ophthalmology. 2005; 112:391–400.
19. Na JH, Sung KR, Baek S, et al. Detection of glaucoma progression by assessment of segmented macular thickness data obtained using spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2012; 53:3817–26.
crossref
20. Mori S, Hangai M, Sakamoto A, Yoshimura N. Spectral-domain optical coherence tomography measurement of macular volume for diagnosing glaucoma. J Glaucoma. 2010; 19:528–34.
crossref
21. Lisboa R, Paranhos A Jr, Weinreb RN, et al. Comparison of abdominal spectral domain OCT scanning protocols for diagnosing pre-perimetric glaucoma. Invest Ophthalmol Vis Sci. 2013; 54:3417–25.
22. Cho JW, Sung KR, Lee S, et al. Relationship between visual field sensitivity and macular ganglion cell complex thickness as abdominal by spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2010; 51:6401–7.
23. Wang M, Hood DC, Cho JS, et al. Measurement of local retinal ganglion cell layer thickness in patients with glaucoma using abdominal-domain optical coherence tomography. Arch Ophthalmol. 2009; 127:875–81.
24. Mwanza JC, Durbin MK, Budenz DL, et al. Glaucoma diagnostic accuracy of ganglion cell-inner plexiform layer thickness: abdominal with nerve fiber layer and optic nerve head. Ophthalmology. 2012; 119:1151–8.
25. Takayama K, Hangai M, Durbin M, et al. A novel method to detect local ganglion cell loss in early glaucoma using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2012; 53:6904–13.
crossref
26. Choi YJ, Jeoung JW, Park KH, Kim DM. Glaucoma detection abdominal of ganglion cell-inner plexiform layer thickness by spectral-abdominal optical coherence tomography in high myopia. Invest Ophthalmol Vis Sci. 2013; 54:2296–304.
27. Kim YJ, Kang MH, Cho HY, et al. Comparative study of macular ganglion cell complex thickness measured by spectral-domain abdominalal coherence tomography in healthy eyes, eyes with abdominal glaucoma, and eyes with early glaucoma. Jpn J Ophthalmol. 2014; 58:244–51.
28. Lee J, Hangai M, Kimura Y, et al. Measurement of macular abdominal cell layer and circumpapillary retinal nerve fiber layer to abdominal paracentral scotoma in early glaucoma. Graefes Arch Clin Exp Ophthalmol. 2013; 251:2003–12.
29. Tan O, Li G, Lu AT, et al. Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. Ophthalmology. 2008; 115:949–56.
crossref
30. Curcio CA, Allen KA. Topography of ganglion cells in human retina. J Comp Neurol. 1990; 300:5–25.
crossref
31. Garcia-Martin E, Pinilla I, Idoipe M, et al. Intra and interoperator reproducibility of retinal nerve fibre and macular thickness abdominals using Cirrus Fourier-domain OCT. Acta Ophthalmol. 2011; 89:e23–9.

Figure 1.
Macular and optic nerve cube scan using deep range imaging swept source optic coherence tomography (DRI OCT-1; Topcon Corp., Tokyo, Japan). (A) Macular ganglion cell layer and inner plexiform layer (mGCIPL), (B) macular ganglion cell complex (mGCC), (C) circumpapillary retinal nerve fiber layer (cpRNFL).
jkos-57-941f1.tif
Figure 2.
Comparison of area under the curve (AUC) of retinal nerve fiber layer (RNFL), macular ganglion cell inner plexiform layer (mGCIPL) and macular ganglion cell complex (mGCC) for distinguishing glaucoma from normal group. (A) Receiver operating characteristics (ROC) curve for detection of early glaucoma, (B) curve for detection of advanced glaucoma. p-values for comparing the AUCs were calculated by Delong's method. cpRNFL = circumpapilary retinal nerve fiber layer; AVG = average.
jkos-57-941f2.tif
Table 1.
Characteristic per groups
Variable Normal Early Glaucoma Advanced Glaucoma Total Comparison (p-value)
Demographic characteristic N = 37 N = 35 N = 37 N = 109  
Age (years) 51.0 ± 11.5 57.6 ± 16.3 58.6 ± 9.4 54.7 ± 12.9 0.054
Sex (n, %)          
 Male 21 (56.8) 19 (54.3) 26 (70.3) 66 (60.6) 0.102
 Female 16 (43.2) 16 (46.7) 11 (29.7) 43 (39.4)  
Ocular characteristic N = 37 N = 35 N = 37 N = 109  
IOP (mm Hg) 15.8 ± 3.6 16.3 ± 3.5 15.3 ± 3.3 15.8 ± 3.5 0.489
MD (dB) −0.7 ± 1.5 −4.5 ± 0.9 −13.2 ± 5.4 −6.6 ± 5.3 <0.0011–2,1–3,2–3
PSD (dB) 1.2 ± 0.9 5.2 ± 1.3 10.9 ± 2.9 6.1 ± 3.7 <0.0011–2,1–3,2–3

Values are presented as mean ± SD unless otherwise indicated. p-values were calculated by analysis of variance (ANOVA) assuming unequal variance for continuous variables and Chi-square test for categorical variables. Posthoc comparison by Scheffe's method: i-j means that i-th group and j-th group had significant differences (i, j = 1, 2, 3; Group 1 = Normal, Group 2 = Early glaucoma, Group 3 = Advanced glaucoma).

IOP = intraocular pressure; MD = mean deviation; PSD = pattern standard deviation.

Table 2.
Circumpapillary retinal nerve fiber layer (cpRNFL), macular ganglion cell inner plexiform layer (mGCIPL), macular ganglion cell complex (mGCC) thickness (μ m) per groups
Variable Normal (n = 37) Early glaucoma (n = 35) Advanced glaucoma (n = 37) Total (n = 109) Comparison by ANOVA* (p-value) Posthoc comparison (p-value)
Normal vs. Early glaucoma Normal vs. Advanced glaucoma Early glaucoma vs. Advanced glaucoma
cpRNFL thickness (μ m)                
 Average 100.3 ± 11.2 85.9 ± 9.5 57.8 ± 13.2 81.3 ± 21.2 <0.001 <0.001 <0.001 <0.001
 Superior 125.1 ± 15.4 100.4 ± 17.1 65.6 ± 18.9 97.0 ± 30.1 <0.001 <0.001 <0.001 <0.001
 Inferior 128.8 ± 22.2 107.4 ± 22.5 65.8 ± 19.1 100.5 ± 33.9 <0.001 <0.001 <0.001 <0.001
 Nasal 68.3 ± 13.7 65.9 ± 13.3 44.5 ± 15.1 59.5 ± 17.6 <0.001 0.772 <0.001 <0.001
 Temporal 79.4 ± 14.2 71.5 ± 14.3 54.5 ± 19.9 68.4 ± 19.4 <0.001 0.134 <0.001 <0.001
mGCIPL thickness (μ m)                
 Average 69.9 ± 5.4 65.4 ± 6.5 49.2 ± 10.4 61.4 ± 11.8 <0.001 0.054 <0.001 <0.001
 Superior 69.2 ± 7.1 66.0 ± 9.1 48.1 ± 15.5 61.0 ± 14.5 <0.001 0.497 <0.001 <0.001
 Superonasal 72.6 ± 8.2 66.6 ± 11.6 50.7 ± 17.1 63.2 ± 15.8 <0.001 0.145 <0.001 <0.001
 Superotemporal 70.5 ± 7.2 66.1 ± 8.9 49.9 ± 17.4 62.1 ± 14.9 <0.001 0.310 <0.001 <0.001
 Inferior 65.2 ± 6.0 63.9 ± 8.9 48.6 ± 13.9 59.2 ± 12.6 <0.001 0.862 <0.001 <0.001
 Inferonasal 70.2 ± 7.7 64.3 ± 9.0 48.7 ± 14.3 61.0 ± 14.0 <0.001 0.076 <0.001 <0.001
 Inferotemporal 71.6 ± 9.7 65.2 ± 9.4 49.2 ± 17.2 62.0 ± 15.8 <0.001 0.112 <0.001 <0.001
mGCC thickness (μ m)                
 Average 106.2 ± 9.4 95.4 ± 11.5 73.7 ± 15.5 91.7 ± 18.4 <0.001 0.002 <0.001 <0.001
 Superior 106.5 ± 9.2 96.1 ± 12.1 73.8 ± 21.6 92.1 ± 20.6 <0.001 0.019 <0.001 <0.001
 Superonasal 118.0 ± 11.5 104.6 ± 16.1 79.3 ± 18.2 100.5 ± 22.4 <0.001 0.002 <0.001 <0.001
 Superotemporal 94.8 ± 9.2 87.0 ± 11.1 67.8 ± 21.1 83.1 ± 18.7 <0.001 0.087 <0.001 <0.001
 Inferior 103.8 ± 10.4 94.3 ± 17.2 73.9 ± 18.1 90.6 ± 19.9 <0.001 0.038 <0.001 <0.001
 Inferonasal 117.7 ± 12.7 103.4 ± 16.2 79.6 ± 16.1 100.2 ± 21.8 <0.001 <0.001 <0.001 <0.001
 Inferotemporal 96.4 ± 11.0 87.1 ± 12.6 67.8 ± 24.4 83.7 ± 20.9 <0.001 0.080 <0.001 <0.001

Values are presented as mean ± SD unless otherwise indicated.

* Posthoc comparison by Scheffe's method

p-values were calculated by analysis of variance (ANOVA) assuming unequal variance.

Table 3.
Multinomial logistic regression for glaucoma with normal as a reference
Variable Early glaucoma
Advanced glaucoma
OR 95% CI of OR p-value OR 95% CI of OR p-value
cpRNFL thickness (μ m)            
 Average 0.87 0.82–0.93 <0.001 0.61 0.50–0.74 <0.001
 Superior 0.91 0.87–0.95 <0.001 0.81 0.76–0.87 <0.001
 Inferior 0.95 0.93–0.98 0.001 0.83 0.77–0.89 <0.001
 Nasal 0.99 0.95–1.02 0.432 0.89 0.84–0.93 <0.001
 Temporal 0.96 0.93–1.00 0.032 0.90 0.87–0.94 <0.001
mGCIPL thickness (μ m)            
 Average 0.87 0.79–0.96 0.005 0.68 0.60–0.79 <0.001
 Superior 0.95 0.90–1.01 0.113 0.82 0.76–0.89 <0.001
 Superonasal 0.93 0.88–0.99 0.016 0.87 0.81–0.92 <0.001
 Superotemporal 0.94 0.88–1.00 0.036 0.82 0.76–0.88 <0.001
 Inferior 0.99 0.94–1.03 0.583 0.82 0.76–0.89 <0.001
 Inferonasal 0.92 0.86–0.98 0.008 0.82 0.76–0.89 <0.001
 Inferotemporal 0.93 0.88–0.99 0.016 0.83 0.77–0.89 <0.001
mGCC thickness (μ m)            
 Average 0.89 0.84–0.95 <0.001 0.77 0.70–0.84 <0.001
 Superior 0.91 0.86–0.96 0.001 0.83 0.77–0.88 <0.001
 Superonasal 0.93 0.89–0.97 0.001 0.85 0.81–0.9 <0.001
 Superotemporal 0.92 0.86–0.97 0.005 0.82 0.77–0.89 <0.001
 Inferior 0.95 0.92–0.99 0.013 0.88 0.83–0.92 <0.001
 Inferonasal 0.92 0.88–0.97 0.001 0.84 0.80–0.90 <0.001
 Inferotemporal 0.95 0.92–0.99 0.013 0.88 0.84–0.92 <0.001

OR = odds ratio; CI = confidence interval; cpRNFL = circumpapillary retinal nerve fiber layer; mGCIPL = macular ganglion cell inner plexiform layer; mGCC = macular ganglion cell complex.

Table 4.
Diagnostic performance of ocular measurements for glaucoma patients from nomal group
Variables Early glaucoma
Advanced glaucoma
SEN SPE ACC AUC (95% CI) SEN SPE ACC AUC (95% CI)
cpRNFL thickness (μ m)                
 Average 0.74 0.89 0.82 0.84 (0.74–0.94) 1.00 1.00 1.00 1.00 (1.00–1.00)
 Superior 0.94 0.70 0.82 0.87 (0.78–0.96) 1.00 0.92 0.96 0.99 (0.98–1.00)
 Inferior 0.69 0.84 0.76 0.79 (0.68–0.90) 1.00 0.97 0.99 1.00 (0.99–1.00)
 Nasal 0.54 0.68 0.61 0.60 (0.46–0.73) 0.81 0.97 0.89 0.90 (0.83–0.98)
 Temporal 0.46 0.84 0.65 0.65 (0.52–0.78) 0.76 0.86 0.81 0.86 (0.77–0.94)
mGCIPL thickness (μ m)                
 Average 0.89 0.43 0.65 0.70 (0.57–0.82) 0.92 0.97 0.95 0.98 (0.95–1.00)
 Superior 0.54 0.73 0.64 0.60 (0.46–0.73) 0.92 0.81 0.86 0.93 (0.88–0.98)
 Superonasal 0.57 0.78 0.68 0.67 (0.54–0.80) 0.78 0.89 0.84 0.89 (0.81–0.96)
 Superotemporal 0.54 0.78 0.67 0.65 (0.52–0.78) 0.86 0.89 0.88 0.93 (0.87–0.99)
 Inferior 0.46 0.78 0.62 0.58 (0.44–0.72) 0.92 0.95 0.93 0.94 (0.88–1.00)
 Inferonasal 0.80 0.57 0.68 0.71 (0.59–0.83) 0.89 0.84 0.86 0.92 (0.86–0.98)
 Inferotemporal 0.74 0.59 0.67 0.68 (0.56–0.81) 0.81 0.92 0.86 0.93 (0.87–0.98)
mGCC thickness (μ m)                
 Average 0.69 0.78 0.74 0.78 (0.67–0.89) 0.95 0.97 0.96 0.99 (0.98–1.00)
 Superior 0.74 0.68 0.71 0.74 (0.62–0.86) 0.86 0.97 0.92 0.96 (0.93–1.00)
 Superonasal 0.77 0.73 0.75 0.79 (0.67–0.90) 0.89 0.97 0.93 0.95 (0.91–1.00)
 Superotemporal 0.71 0.73 0.72 0.73 (0.61–0.85) 0.86 0.89 0.88 0.95 (0.90–0.99)
 Inferior 0.77 0.65 0.71 0.72 (0.60–0.84) 0.92 0.86 0.89 0.94 (0.88–1.00)
 Inferonasal 0.69 0.73 0.71 0.77 (0.67–0.88) 0.97 0.86 0.92 0.97 (0.94–1.00)
 Inferotemporal 0.69 0.73 0.71 0.72 (0.60–0.84) 0.89 0.89 0.89 0.94 (0.87–1.00)

Sensitivity, specificity and accuracy were computed using the threshold by Youden's index. 95% CI of AUC was calculated by Delong's method.

SEN = sensitivity; SPE = specificity; ACC = accuracy; AUC = area under the curve; CI = confidence interval; cpRNFL = circumpapillary retinal nerve fiber layer; mGCIPL = macular ganglion cell; inner plexiform layer; mGCC = macular ganglion cell complex.

TOOLS
Similar articles