Abstract
Purpose
To observe the shape of posterior vitreous spaces using swept-source optical coherence tomography (SS-OCT) in normal eyes.
Methods
The posterior vitreous of 80 eyes of 80 volunteers without ocular disease was imaged. The DRI OCT-1 Atlantis (Topcon, Oakland, NJ, USA) was used to acquire scans of the posterior vitreous over an 18 × 18-mm2 area using the 12-mm horizontal line scan protocol. The size of the premacularis bursa was measured by the aliper function of the OCT.
References
1. Barteselli G, Bartsch DU, El-Emam S, et al. Combined depth imaging technique on spectral-domain optical coherence tomography. Am J Ophthalmol. 2013; 155:727–32. 732.e1.
2. Hoehn F, Mirshahi A, Hattenbach LO. Optical coherence tomography for diagnosis of posterior vitreous detachment at the macular region. Eur J Ophthalmol. 2009; 19:442–7.
3. You JY, Kim HC, Moon JW. Comparison of the efficacy between time and spectral domain optical coherence tomography for the identification of vitreomacular interface. J Korean Ophthalmol Soc. 2013; 54:97–103.
4. Spaide RF. Measurement of the posterior precortical vitreous pocket in fellow eyes with posterior vitreous detachment and macular holes. Retina. 2003; 23:481–5.
5. Park HY, Shin HY, Park CK. Imaging the posterior segment of the eye using swept-source optical coherence tomography in myopic glaucoma eyes: comparison with enhanced-depth imaging. Am J Ophthalmol. 2014; 157:550–7.
6. Worst JG. Cisternal systems of the fully developed vitreous body in the young adult. Trans Ophthalmol Soc U K. 1977; 97:550–4.
7. Yokoi T, Toriyama N, Yamane T, et al. Development of a premacular vitreous pocket. JAMA Ophthalmol. 2013; 131:1095–6.
9. Fisher YL, Slakter JS, Friedman RA, Yannuzzi LA. Kinetic ultrasound evaluation of the posterior vitreoretinal interface. Ophthalmology. 1991; 98:1135–8.
10. Perichon JY, Brasseur G, Uzzan J. Ultrasonographic study of posterior vitreous detachment in emmetropic eyes. J Fr Ophtalmol. 1993; 16:538–44.
11. Shin YU, Lee BR, Lim HW. A comparison of image quality between swept source optical coherence tomography and spectral domain optical coherence tomography according to ocular media opacity. Invest Ophthalmol Vis Sci. 2014; 55:3359.
12. Park SM, Cho SW, Lee TG. Swept source optical coherence tomography findings in gas-filled eyes after macular hole surgery. J Korean Ophthalmol Soc. 2015; 56:1386–91.
13. Itakura H, Kishi S, Li D, Akiyama H. Observation of posterior precortical vitreous pocket using swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2013; 54:3102–7.
14. Stanga PE, Sala-Puigdollers A, Caputo S, et al. In vivo imaging of cortical vitreous using 1050-nm swept-source deep range imaging optical coherence tomography. Am J Ophthalmol. 2014; 157:397–404.e2.
15. Itakura H, Kishi S. Alterations of posterior precortical vitreous pockets with positional changes. Retina. 2013; 33:1417–20.
16. Uchino E, Uemura A, Ohba N. Initial stages of posterior vitreous detachment in healthy eyes of older persons evaluated by optical coherence tomography. Arch Ophthalmol. 2001; 119:1475–9.
Table 1.
Eyes |
Prevalence of bursa premacularis |
|||
---|---|---|---|---|
% | No. | % | No. | |
No PVD | 58.75 | 47 | 91.5 | 43/47 |
PVD stage 1* | 8.75 | 7 | 28.6 | 2/7 |
PVD stage 2† | 10 | 8 | 12.5 | 1/8 |
PVD stage 3‡ | 5 | 4 | 25 | 1/4 |
PVD stage 4§ | 0 | 0 | − | 0 |
Not gradable | 17.5 | 14 | 21.4 | 3/14 |
Total | 100 | 80 | − | 50/80 |