Journal List > J Korean Ophthalmol Soc > v.57(9) > 1010393

Park, Kim, Lee, and Lee: Iris-trabecular Contact Index Change after Cataract Surgery in Acute Angle Closure Glaucoma

Abstract

Purpose

To evaluate the change of iris-trabecular contact index (ITC index) after cataract surgery in acute angle closure glaucoma.

Methods

Twelve patients (17 eyes) who had a history of acute angle closure glaucoma underwent swept source optical coherence tomography before and after cataract surgery. Correlations between lens vault (LV), ITC index and intraocular pressure (IOP), anterior chamber depth (ACD), anterior chamber volume (ACV), and angle parameters were analyzed before and after cataract surgery.

Results

IOP (p = 0.007), ACD (p < 0.001), ACV (p < 0.001), angle parameters (p = 0.001), and ITC index (p = 0.012) were improved after cataract surgery. ITC index decreased from 88.42 ± 23.59% to 48.91 ± 35.13% after cataract surgery (p = 0.012). There was no correlation between LV and ACD (p = 0.075), ACV (p = 0.864), angle parameter (p = 0.112–0.707), or ITC index (p = 0.288) before cataract surgery. The correlations between ITC index and IOP (p = 0.021), ACD (p = 0.002), ACV (p < 0.001), and angle parameter (p = 0.001–0.030) were statistically significant before surgery but not statistically significant (p = 0.223/0.206/0.761/0.096–0.819) after surgery.

Conclusions

ITC index significantly improved after cataract surgery, but part of angle closure was not resolved in some cases of acute angle closure glaucoma.

References

1. Lowe RF. Aetiology of the anatomical basis for primary abdominal glaucoma. Biometrical comparisons between normal eyes and eyes with primary abdominal glaucoma. Br J Ophthalmol. 1970; 54:161–9.
2. Lowe RF. Angle-closure, pupil dilatation, and pupil block. Br J Ophthalmol. 1966; 50:385–9.
crossref
3. Markowitz SN, Morin JD. The ratio of lens thickness to axial length for biometric standardization in abdominal glaucoma. Am J Ophthalmol. 1985; 99:400–2.
4. Marchini G, Pagliarusco A, Toscano A, et al. Ultrasound abdominal and conventional ultrasonographic study of ocular abdominal in primary abdominal glaucoma. Ophthalmology. 1998; 105:2091–8.
5. Nongpiur ME, He M, Amerasinghe N, et al. Lens vault, thickness, and position in Chinese subjects with angle closure. Ophthalmology. 2011; 118:474–9.
crossref
6. Foo LL, Nongpiur ME, Allen JC, et al. Determinants of angle width in Chinese Singaporeans. Ophthalmology. 2012; 119:278–82.
crossref
7. Aung T, Nolan WP, Machin D, et al. Anterior chamber depth and the risk of primary angle closure in 2 East Asian populations. Arch Ophthalmol. 2005; 123:527–32.
crossref
8. Alsagoff Z, Aung T, Ang LP, Chew PT. abdominal clinical course of primary abdominal glaucoma in an Asian population. Ophthalmology. 2000; 107:2300–4.
9. Robin AL, Pollack IP. Argon laser peripheral iridotomies in the treatment of primary angle closure glaucoma. abdominal fol-low-up. Arch Ophthalmol. 1982; 100:919–23.
10. Lam DS, Lai JS, Tham CC, et al. Argon laser peripheral iridoplasty versus conventional systemic medical therapy in treatment of acute primary abdominal glaucoma: a prospective, randomized, abdominalled trial. Ophthalmology. 2002; 109:1591–6.
11. Yeung BY, Ng PW, Chiu TY, et al. Prevalence and mechanism of appositional angle closure in acute primary angle closure after iridotomy. Clin Experiment Ophthalmol. 2005; 33:478–82.
crossref
12. Lam DS, Leung DY, Tham CC, et al. Randomized trial of early phacoemulsification versus peripheral iridotomy to prevent abdominal pressure rise after acute primary angle closure. Ophthalmology. 2008; 115:1134–40.
13. Aung T, Ang LP, Chan SP, Chew PT. Acute primary abdominal: long-term intraocular pressure outcome in Asian eyes. Am J Ophthalmol. 2001; 131:7–12.
14. Kim DD, Doyle JW, Smith MF. Intraocular pressure reduction abdominal phacoemulsification cataract extraction with posterior chamber lens implantation in glaucoma patients. Ophthalmic Surg Lasers. 1999; 30:37–40.
15. Yun YM, Yim JH, Kim CS. Clinical factors that influence abdominal pressure change after cataract surgery in primary open-abdominal glaucoma and abdominal glaucoma. J Korean Ophthalmol Soc. 2006; 47:85–96.
16. Sakata LM, Lavanya R, Friedman DS, et al. Comparison of gonioscopy and anterior segment ocular coherence tomography in abdominaling angle closure in different quadrants of the anterior chamber angle. Ophthalmology. 2008; 115:769–74.
17. Baskaran M, Ho SW, Tun TA, et al. Assessment of circumferential abdominal by the iris-trabecular contact index with swept-source optical coherence tomography. Ophthalmology. 2013; 120:2226–31.
18. Ho SW, Baskaran M, Zheng C, Tun TA. Swept source optical abdominal tomography measurement of the iris-trabecular contact (ITC) index: a new parameter for angle closure. Graefes Arch Clin Exp Ophthalmol. 2013; 251:1205–11.
19. Mak H, Xu G, Leung CK. Imaging the iris with swept-source abdominal coherence tomography: relationship between iris volume and primary angle closure. Ophthalmology. 2013; 120:2517–24.
20. Moghimi S, Vahedian Z, Fakhraie G, et al. Ocular biometry in the subtypes of angle closure: an anterior segment optical coherence tomography study. Am J Ophthalmol. 2013; 155:664–73. 673.e1.
crossref
21. Lai I, Mak H, Lai G, et al. Anterior chamber angle imaging with swept-source optical coherence tomography: measuring peripheral anterior synechia in glaucoma. Ophthalmology. 2013; 120:1144–9.
crossref
22. Lim MC, Lim LS, Gazzard G, et al. Lens opacity, thickness, and position in subjects with acute primary angle closure. J Glaucoma. 2006; 15:260–3.
crossref
23. Kim YK, Yoo BW, Kim HC, et al. Relative lens vault in subjects with angle closure. BMC Ophthalmol. 2014; 14:93.
crossref
24. Nongpiur ME, Gong T, Lee HK, et al. Subgrouping of primary abdominal-closure suspects based on anterior segment optical coherence tomography parameters. Ophthalmology. 2013; 120:2525–31.
25. Yan YJ, Wu LL, Wang X, Xiao GG. Appositional angle closure in Chinese with primary angle closure and primary angle closure glaucoma after laser peripheral iridotomy. Invest Ophthalmol Vis Sci. 2014; 55:8506–12.
crossref

Figure 1.
Swept source optical coherence tomography image illustrating anterior chamber depth (ACD) and lens vault (LV). White arrows indicate the scleral spur.
jkos-57-1400f1.tif
Figure 2.
Cross-section image of angle structure illustrating angle parameters. (A) Angle opening distance at 500 μ m from scleral spur (AOD500) and trabecular-iris angle 500 (TIA500). (B) Trabecular-iris surface area 500 (TISA500) is expressed by dot printed and angle recess area 500 (ARA500) is expressed by a hatched box.
jkos-57-1400f2.tif
Figure 3.
Swept source optical coherence tomography image illustrating a single frame of anterior chamber. (A) The red colored “x” are the scleral spurs (SS) and the “+” are the iris-trabecular contact end points (EP). (B) Iris-trabecular con-tract (ITC) chart with blue area representing the amount and the distribution of iris-trabecular contact. Red line is the consecutive line of the scleral spur and the green line is the consecutive line of end point. (C) Iris-trabecular contact graph with X axis representing the degree of the angle, Y axis repre-senting iris-trabecular contact. “+” means the contact with iris and trabecular meshwork and “-” means non-contact between the two structures.
jkos-57-1400f3.tif
Table 1.
Patient baseline characteristics
  Mean ± SD Range
Age (years) 64.4 ± 5.7 54–76
Gender (male:female) 5:7  
Right eye:Left eye 7:10  
Lens vault (μ m) 738.6 ± 303.2 372–1,405
Axial length (mm) 22.29 ± 1.37 19.69–24.36
Endothelial cell count (/mm2) 2,400.5 ± 744.4 409–3,194

Values are presented as mean ± SD unless otherwise indicated.

SD = standard deviation.

Table 2.
Preoperative and postoperative outcomes
  Preoperation Postoperation p-value
BCVA (log MAR) 0.38 ± 0.44 0.11 ± 0.17 <0.001
Intraocular pressure (mm Hg) 20.29 ± 7.56 15.71 ± 4.04 0.007
Glaucoma medication (No.) 1.2 ± 1.2 0.2 ± 0.8 0.001
Anterior chamber depth (mm) 1.85 ± 0.33 3.50 ± 0.39 <0.001
Anterior chamber volume (mm3) 79.06 ± 22.65 146.71 ± 22.60 <0.001
Anterior chamber width (mm) 10.37 ± 0.73 10.88 ± 0.56 0.235
Iris volume (mm3) 24.98 ± 5.65 26.31 ± 5.49 0.451
Angle parameter
 AOD (mm) 0.30 ± 0.10 0.51 ± 0.12 0.001
 ARA (mm2) 0.15 ± 0.04 0.21 ± 0.05 0.001
 TISA (mm2) 0.12 ± 0.03 0.18 ± 0.04 0.001
 TIA (°) 20.72 ± 7.91 34.08 ± 6.03 0.001
ITC index (%) 88.42 ± 23.59 48.91 ± 35.13 0.012
Invisible range (°) 26.77 ± 38.59 23.62 ± 36.86 0.561

Values are presented as mean ± SD unless otherwise indicated.

BCVA = best corrected visual acuity; AOD = angle opening distance; ARA = angle recess area; TISA = trabecular-iris surface area; TIA = trabecular-iris angle; ITC=iris-trabecular contact.

Table 3.
Correlation between lens vault and the other parame-ters before cataract surgery
  Spearman's rho p-value
IOP (mm Hg) 0.600 0.023
Anterior chamber depth (mm)3 −0.490 0.075
Anterior chamber volume (mm3) −0.051 0.864
Angle parameter
 AOD (mm) ARA (mm2) −0.115 −0.181 0.707 0.553
 TISA (mm2) −0.462 0.112
 TIA (°) −0.132 0.668
ITC index (%) 0.398 0.288

IOP = intraocular pressure; AOD = angle opening distance; ARA = angle recess area; TISA = trabecular-iris surface area; TIA = trabecular-iris angle; ITC = iris-trabecular contact.

Table 4.
Correlation between pre (1)/postoperative (2) iris-tra-becular contact index and the other parameters
  Spearman's rho p-value
Preoperation (1)
 Intraocular pressure (mm Hg) 0.479 0.021
 Anterior chamber depth (mm) −0.617 0.002
 Anterior chamber volume (mm3) −0.752 <0.001
 Angle parameter
  AOD (mm) −0.452 0.030
  ARA (mm2) −0.613 0.002
  TISA (mm2) −0.642 0.001
  TIA (°) −0.580 0.004
 Iris volume (mm3) 0.513 0.012
Postoperation (2)
 Intraocular pressure (mm Hg) 0.312 0.223
 Anterior chamber depth (mm) 0.323 0.206
 Anterior chamber volume (mm3) −0.080 0.761
 Angle parameter
  AOD (mm) −0.060 0.819
  ARA (mm2) −0.417 0.096
  TISA (mm2) −0.348 0.170
  TIA (°) −0.135 0.606
 Iris volume (mm3) 0.053 0.841

AOD = angle opening distance; ARA = angle recess area; TISA = trabecular-iris surface area; TIA = trabecular-iris angle.

TOOLS
Similar articles