Journal List > J Korean Ophthalmol Soc > v.56(11) > 1010144

Lee, Kim, and Kim: Change in Visual Acuity Following Trans-Scleral Diode Laser Cyclophotocoagulation in Refractory Glaucoma

Abstract

Purpose

To evaluate the effects of trans-scleral diode laser cyclophotocoagulation (TSDLC) on best corrected visual acuity (BCVA) in patients with refractory glaucoma.

Methods

The medical records of 148 eyes of 148 patients with refractory glaucoma who were followed-up for over 6 months af-ter TSDLC were analyzed retrospectively. Among them, 49 eyes of 49 subjects who had BCVA greater than no light perception (NLP) before TSDLC were classified as Group 1 and the other 99 eyes of 99 patients who had NLP vision were classified as Group 2. The outcomes of TSDLC including change in BCVA following surgery were analyzed for all patients and 49 subjects.

Results

The mean follow-up period in Group 1 was 19.1 ± 13.5 months and 16.7 ± 12.7 months in Group 2. The intraocular pres-sure (IOP) and the number of IOP lowering medications decreased in both groups (both p < 0.001). In all subjects, there was no significant difference between BCVA before surgery and at the last follow-up (2.4 ± 0.9 log MAR and 2.5 ± 0.8 log MAR, re-spectively, p = 0.612). However, in Group 1, BCVA was decreased from 1.4 ± 1.0 to 1.9 ± 1.1 log MAR after the TSDLC ( p < 0.001). In those patients, visual loss ≥ 0.2 log MAR was found in 31 eyes (63.3%) and light perception was lost in 15 eyes (30.6%). After treatment, corneal edema developed in 5 eyes (3.4%), phthisis bulbi and chronic hypotony occurred in 3 eyes each (2%) and iri-docydlitis occurred in 2 eyes (1.4%).

Conclusions

TSDLC in patients with refractory glaucoma showed an efficient reduction in IOP and the number of IOP-lowering medications. However, there was a significant loss in BCVA in many patients and therefore, careful monitoring regarding poten-tial visual loss is necessary when considering TSDLC in glaucoma patients with useful vision.

References

1. Beckman H, Fuller TA. Carbon dioxide laser scleral dissection and filtering procedure for glaucoma. Am J Ophthalmol. 1979; 88:73–7.
crossref
2. Bietti G. Surgical intervention on the ciliary body; new trends for the relief of glaucoma. J Am Med Assoc. 1950; 142:889–97.
3. Alward WLM. Laser cyclophotocoagulation. Weingeist TA, Sneed SR, editors. Laser surgery in ophthalmology: Practical applica-tions. 1st. East Norwalk, Conn: Appleton and Lange;1992. chap. 14.
4. Pastor SA, Singh K, Lee DA. . Cyclophotocoagulation: a re-port by the American Academy of Ophthalmology. Ophthalmology. 2001; 108:2130–8.
crossref
5. Assia EI, Hennis HL, Stewart WC. . A comparison of neo-dymium: yttrium aluminum garnet and diode laser transscleral cy-clophotocoagulation and cyclocryotherapy. Invest Ophthalmol Vis Sci. 1991; 32:2774–8.
6. Brancato R, Leoni G, Trabucchi G. . Histopathology of con-tinuous wave neodymium: yttrium aluminum garnet and diode la-ser contact transscleral lesions in rabbit ciliary body. A com-parative study. Invest Ophthalmol Vis Sci. 1991; 32:1586–92.
7. Spencer AF, Vernon SA. “Cyclodiode”: results of a standard protocol. Br J Ophthalmol. 1999; 83:311–6.
crossref
8. Kosoko O, Gaasterland DE, Pollack IP, Enger CL. Long-term out-come of initial ciliary ablation with contact diode laser transscleral cyclophotocoagulation for severe glaucoma. The Diode Laser Ciliary Ablation Study Group. Ophthalmology. 1996; 103:1294–302.
9. Francis BA, Kwon J, Fellman R. . Endoscopic ophthalmic sur-gery of the anterior segment. Surv Ophthalmol. 2014; 59:217–31.
crossref
10. Panarelli JF, Banitt MR, Sidoti PA. Transscleral diode laser cyclo-photocoagulation after baerveldt glaucoma implant surgery. J Glaucoma. 2014; 23:405–9.
crossref
11. Ishida K. Update on results and complications of cyclopho-tocoagulation. Curr Opin Ophthalmol. 2013; 24:102–10.
crossref
12. Egbert PR, Fiadoyor S, Budenz DL. . Diode laser transscleral cyclophotocoagulation as a primary surgical treatment for primary open-angle glaucoma. Arch Ophthalmol. 2001; 119:345–50.
crossref
13. Wilensky JT, Kammer J. Long-term visual outcome of transscleral laser cyclotherapy in eyes with ambulatory vision. Ophthalmology. 2004; 111:1389–92.
crossref
14. Ansari E, Gandhewar J. Long-term efficacy and visual acuity fol-lowing transscleral diode laser photocoagulation in cases of re-fractory and non-refractory glaucoma. Eye (Lond). 2007; 21:936–40.
crossref
15. Bloom PA, Tsai JC, Sharma K. . “Cyclodiode”. Trans-scleral diode laser cyclophotocoagulation in the treatment of advanced re-fractory glaucoma. Ophthalmology. 1997; 104:1508–19. discussion 1519-20.
16. Bloom PA, Clement CI, King A. . A comparison between tube surgery, ND:YAG laser and diode laser cyclophotocoagulation in the management of refractory glaucoma. Biomed Res Int 2013;. 2013; 371951.
crossref
17. Gupta V, Agarwal HC. Contact trans-scleral diode laser cyclo-photocoagulation treatment for refractory glaucomas in the Indian population. Indian J Ophthalmol. 2000; 48:295–300.
18. Han SK, Park KH. Long-term results of diode laser trans-scleral cyclophotocoagulation in neovascular glaucoma. J Korean Ophthalmol Soc. 1999; 40:523–31.
19. Moon IA, Youn JW. The effect of transscleral diode laser cyclo-photocoagulation in refractory glaucoma. J Korean Ophthalmol Soc. 1999; 40:2252–8.
20. Schuman JS, Puliafito CA, Allingham RR. . Contact trans-scleral continuous wave neodymium:YAG laser cyclophotocoa-gulation. Ophthalmology. 1990; 97:571–80.
crossref
21. Schuman JS, Bellows AR, Shingleton BJ. . Contact trans-scleral Nd:YAG laser cyclophotocoagulation. Midterm results. Ophthalmology. 1992; 99:1089–94. discussion 1095.
22. Hampton C, Shields MB, Miller KN, Blasini M. Evaluation of a protocol for transscleral neodymium: YAG cyclophotocoagulation in one hundred patients. Ophthalmology. 1990; 97:910–7.
23. Brindley G, Shields MB. Value and limitations of cyclocryotherapy. Graefes Arch Clin Exp Ophthalmol. 1986; 224:545–8.
crossref
24. Dickens CJ, Nguyen N, Mora JS. . Long-term results of non-contact transscleral neodymium:YAG cyclophotocoagulation. Ophthalmology. 1995; 102:1777–81.
25. Eid TE, Katz LJ, Spaeth GL, Augsburger JJ. Tube-shunt surgery versus neodymium:YAG cyclophotocoagulation in the management of neovascular glaucoma. Ophthalmology. 1997; 104:1692–700.
crossref
26. Sood S, Beck AD. Cyclophotocoagulation versus sequential tube shunt as a secondary intervention following primary tube shunt failure in pediatric glaucoma. J AAPOS. 2009; 13:379–83.
crossref
27. Yildirim N, Yalvac IS, Sahin A. . A comparative study between diode laser cyclophotocoagulation and the Ahmed glaucoma valve implant in neovascular glaucoma: a long-term follow-up. J Glaucoma. 2009; 18:192–6.
28. Ramli N, Htoon HM, Ho CL. . Risk factors for hypotony after transscleral diode cyclophotocoagulation. J Glaucoma. 2012; 21:169–73.
crossref
29. Noureddin BN, Zein W, Haddad C. . Diode laser transcleral cy-clophotocoagulation for refractory glaucoma: a 1 year follow-up of patients treated using an aggressive protocol. Eye (Lond). 2006; 20:329–35.
crossref
30. Murphy CC, Burnett CA, Spry PG. . A two centre study of the dose-response relation for transscleral diode laser cyclophotocoa-gulation in refractory glaucoma. Br J Ophthalmol. 2003; 87:1252–7.
crossref
31. Iliev ME, Gerber S. Long-term outcome of trans-scleral diode laser cyclophotocoagulation in refractory glaucoma. Br J Ophthalmol. 2007; 91:1631–5.
crossref
32. Nabili S, Kirkness CM. Trans-scleral diode laser cyclophoto- co-agulation in the treatment of diabetic neovascular glaucoma. Eye (Lond). 2004; 18:352–6.
33. Rotchford AP, Jayasawal R, Madhusudhan S. . Transscleral di-ode laser cycloablation in patients with good vision. Br J Ophthal-mol. 2010; 94:1180–3.
crossref
34. Ghosh S, Manvikar S, Ray-Chaudhuri N, Birch M. Efficacy of transscleral diode laser cyclophotocoagulation in patients with good visual acuity. Eur J Ophthalmol. 2014; 24:375–81.
crossref

Figure 1.
Kaplan-Meier plot showing survival for the loss of vis-ual acuity in group 1 (patients with preoperative BCVA of ‘light perception’ or better). (A) Kaplan-Meier plot showing survival for the loss of 0.1 or more log MAR visual acuity. (B) Kaplan- Meier plot showing survival for the loss of 0.2 or more log MAR visual acuity. (C) Kaplan-Meier plot showing survival for the loss of 0.3 or more log MAR visual acuity. BCVA = best corrected visual acuity.
jkos-56-1759f1.tif
Table 1.
Demographics of patients
Clinical variables Group 1 Group 2 Total p-value*
No. of patients (number of eyes) 49 (49) 99 (99) 148 (148)
Age (years) 59.3 ± 15.4 61.7 ± 13.6 60.9 ± 15.9 0.369
Sex (male/female) 33/16 57/42 90/58 0.519
BCVA (log MAR, decimal) 1.4 ± 1.0 (0.04) ) 2.9 (NLP) 2.4 ± 0.9 (HM) <0.001
IOP (mm Hg) 38.8 ± 15.7 46.8 ± 12.3 41.1 ± 15.3 0.192
IOP lowering medication 2.6 ± 0.7 2.9 ± 0.8 2.8 ± 0.8 0.351
Follow up (months) 19.1 ± 13.5 16.7 ± 12.7 17.3 ± 11.2 0.293
Lens status
Phakia (%) 26 (53.1) 49 (49.5) 75 (50.7) 0.683
Aphakia (%) 6 (12.2) 2 (2.0) 8 (5.4) 0.016
Pseudophakia (%) 17 (34.7) 48 (48.5) 65 (43.9) 0.176
Previous ocular surgery
AGV implantation 13 6 19 0.001
Vitreo-retinal surgery 4 2 6 0.096
Filtration surgery 3 3 6 0.313
Glaucoma type
Neovascular glaucoma (%) 23 (46.9) 62 (62.6) 85 (57.4) 0.069
Secondary glaucoma (%)§ 12 (24.5) 18 (18.2) 30 (20.3) 0.369
Primary open angle glaucoma (%) 8 (16.3) 9 (9.1) 17 (11.5) 0.153
Primary angle closure glaucoma (%) 3 (6.1) 5 (5.1) 8 (5.4) 0.529
Uveitic glaucoma (%) 2 (4.1) 3 (3.0) 5 (3.4) 0.537
Congenital glaucoma (%) 1 (2.0) 2 (2.0) 3 (2.0) 0.704
Treatment dose
Power (mW) 1,886.4 ± 252.7 1,951.6 ± 256.4 1,930.0 ± 266.6 0.161
Spot numbers 16.4 ± 2.8 17.9 ± 1.9 17.4 ± 2.5 0.267
Duration (msec) 1,831.8 ± 235.8 2,344.1 ± 216.2 2,174.5 ± 1,399.6 0.235
Treatment range ( o) 286.4 ± 163.5 352.3 ± 132.3 257.66 ± 78.7 0.115
Total energy (J) 54.6 ± 13.1 66.3 ± 38.4 60.2 ± 38.4 0.348

Values are presented as mean ± SD unless otherwise indicated.

BCVA = best corrected visual acuity; NLP = no light perception; HM = hand motion; IOP = intraocular pressure; AGV = Ahmed glaucoma valve.* Student t-test, if not indicated otherwise; Pearson’s chi-square test; ‡ Fisher’s exact test; § Secondary glaucoma included glaucoma secondary to intraocular surgery or trauma.

Table 2.
Treatment outcomes after trans-scleral diode laser cyclophotocoagulation
Clinical variables Group 1 Group 2 Total
IOP (mm Hg)
Baseline 38.8 ± 15.7 46.8 ± 12.3 41.1 ± 15.3
Last follow-up 19.3 ± 15.6 20.2 ± 12.9 19.9 ± 11.1
p-value* <0.001 <0.001 <0.001
IOP lowering medication (n)
Baseline 2.6 ± 0.7 2.9 ± 0.8 2.8 ± 0.8
Last follow-up 1.5 ± 1.0 1.7 ± 0.9 1.6 ± 1.0
p-value* <0.001 <0.001 <0.001
BCVA (log MAR)
Baseline 1.4 ± 1.0 2.9 2.4 ± 0.9
Last follow-up 1.9 ± 1.1 2.9 2.5 ± 0.8
p-value* <0.001 NA 0.612

Values are presented as mean ± SD unless otherwise indicated.

IOP = intraocular pressure; BCVA = best corrected visual acuity; NA = not applicable.

* Paired t-test.

Table 3.
Change in BCVA in group 1*
Amount of change (log MAR) Number of eyes Cumulative number (%)
Deteriorated BCVA
Amount ≥ 0.3 26 (15) 26 (53.1)
0.3 > amount ≥ 0.2 5 31 (63.3)
0.2 > amount ≥ 0.1 8 39 (79.6)
No change 5 44 (89.8)
Improved BCVA 5 49 (100.0)
Total 49/49 49 (100.0)

BCVA = best corrected visual acuity.

* Patients with preoperative BCVA of ‘light perception’ or better.

‘Change in BCVA’ means last follow-up BCVA– baseline BCVA in log MAR; Number in parenthesis indicates the number of patients who lost light perception after trans-scleral diode laser cyclopho- tocoagulation (TSDCP).

Table 4.
Comparision of clinical variables after transsclearal diode laser cyclophotocoagulation in group 1*
Clinical variables Patients with deteriorated BCVA Patients with stable BCVA p-value
No. of patients (number of eyes) 39/39 10/10
Age (years) 58.0 ± 15.6 64.7 ± 14.1 0.085
Sex (male/female) 27/12 7/3 0.642
BCVA (log MAR)
Baseline (decimal) 1.4 ± 0.9 (0.04) 1.8 ± 0.9 (0.01) 0.874
Last follow up (decimal) 2.0 ± 1.0 (CF) 1.5 ± 1.1 (0.03) 0.110
IOP (mm Hg)
Baseline 40.3 ± 15.7 32.8 ± 14.5 0.142
Last follow up 18.9 ± 16.7 20.9 ± 8.0 0.705
IOP lowering medication (n)
Baseline 2.6 ± 0.6 2.3 ± 1.5 0.966
Last follow up 1.7 ± 1.3 1.8 ± 1.0 0.861
Follow up months 19.1 ± 13.5 19.7 ± 12.7 0.426
Lens status
Phakia (%) 20 (51.3) 6 (60.0) 0.447
Aphakia (%) 5 (12.8) 1 (10.0) 0.645
Pseudophakia (%) 14 (35.9) 3 (30.0) 0.518
Previous ocular surgery
AGV implantation 10 3 0.533
Vitreoretinal surgery 4 0 0.569
Filtration surgery 1 2 0.102
Glaucoma type
Neovascular glaucoma (%) 19 (48.7) 4 (40.0) 0.447
Secondary glaucoma (%) 10 (25.6) 2 (20.0) 0.534
Primary open angle glaucoma (% ) 5 (12.8) 3 (30.0) 0.197
Primary angle closure glaucoma ( (%) 2 (5.1) 1 (10.0) 0.504
Uveitic glaucoma (%) 2 (5.1) 0 0.630
Congenital glaucoma (%) 1 (2.6) 0 0.796
Treatment dose
Power (mW) 1,888.9 ± 260.4 1,875.0 ± 250.1 0.902
Spot numbers 16.4 ± 2.8 16.2 ± 3.1 0.932
Duration (msec) 1,822.2 ± 239.0 1,875.0 ± 250.0 0.712
Treatment range (°) 272.0 ± 103.9 339.6 ± 180.0 0.625
Total energy (J) 53.6 ± 13.4 57.9 ± 12.3 0.466

Values are presented as mean ± SD unless otherwise indicated.

BCVA = best corrected visual acuity; CF = finger count; IOP = intraocular pressure; AGV = Ahmed glaucoma valve.

* Patients with preoperative best corrected visual acuity of ‘light perception’ or better; Mann-Whitney U-test; Fisher’s exact test.

Table 5.
Postoperative complications
Complications Group 1 Group 2 Total p-value*
Corneal edema (%) 3 (6.1) 2 (2.0) 5 (3.4) 0.261
Phthisis (%) 1 (2.0) 2 (2.0) 3 (2.0) 0.694
Hypotony (%) 1 (2.0) 2 (2.0) 3 (2.0) 0.694
Iridocyclitis (%) 1 (2.0) 1 (1.0) 2 (1.4) 0.603
Total 6 7 13 0.328

* Fisher’s exact test.

TOOLS
Similar articles