Abstract
Purpose
To evaluate various types and; characteristics of non-retinal lesions associated with ultra-wide field scanning laser ophthalmoscope images.
Methods
This retrospective study included 139 eyes of 139 patients with non-retinal lesions observed on color images obtained using Optomap 200Tx (Optos PLC, Dunfermline, Scotland, UK). The non-retinal lesion is a hyperreflective or hyporeflective shadow due to anterior segment of the eye or vitreous except the retina. Types and characteristics of red laser separation, green laser separation and autofluorescence images of non-retinal lesions were evaluated.
Results
All non-retinal lesions in images were categorized into 2 groups according to the location of non-retinal lesions. The ante-rior non-retinal lesions group included corneal opacity, cataract and posterior capsular opacity. The posterior non-retinal lesions group included asteroid hyalosis, posterior vitreous detachment, vitreous opacity and vitreous hemorrhage. Anterior non-retinal le-sions were more often hyporeflective in red and green laser separation images ( p < 0.001). Posterior non-retinal lesions were more often hyperreflective in green laser separation images and hyporeflective in red laser separation images ( p < 0.001).
Conclusions
Ultra-wide field scanning laser ophthalmoscope images can frequently have various shadows from anterior or pos-terior lesions of the eye. These shadows show a difference in reflectivity depending on their origins. To understand the difference helps in the interpretation of the fundus images.
References
2. Oishi A, Hidaka J, Yoshimura N. Quantification of the image ob-tained with a wide-field scanning ophthalmoscope. Invest Ophthalmol Vis Sci. 2014; 55:2424–31.
3. Khandhadia S, Madhusudhana KC, Kostakou A. . Use of opto-map for retinal screening within an eye casualty setting. Br J Ophthalmol. 2009; 93:52–5.
4. Fung TH, Yusuf IH, Smith LM. . Outpatient Ultra wide-field intravenous fundus fluorescein angiography in infants using the Optos P200MA scanning laser ophthalmoscope. Br J Ophthalmol. 2014; 98:302–4.
5. Patel CK, Fung TH, Muqit MM. . Non-contact ultra-widefield imaging of retinopathy of prematurity using the Optos dual wave-length scanning laser ophthalmoscope. Eye (Lond). 2013; 27:589–96.
6. Patel M, Kiss S. Ultra-wide-field fluorescein angiography in reti-nal disease. Curr Opin Ophthalmol. 2014; 25:213–20.
7. Lee DH, Kim SS, Kim M, Koh HJ. Identifiable peripheral retinal lesions using ultra-widefield scanning laser ophthalmoscope and its usefulness in myopic patients. J Korean Ophthalmol Soc. 2014; 55:1814–20.
8. Ahn SE, Kim SW, Oh J, Huh K. Ultra-wide-field green (532 nm) and red (633 nm) reflectance imaging of the "sunset glow" fundus in chronic Vogt-Koyanagi-Harada disease. Indian J Ophthalmol. 2013; 61:38–9.
9. Park SP, Siringo FS, Pensec N. . Comparison of fundus auto-fluorescence between fundus camera and confocal scanning laser ophthalmoscope-based systems. Ophthalmic Surg Lasers Imaging Retina. 2013; 44:536–43.
10. Yokota R, Koto T, Inoue M, Hirakata A. Ultra-wide-field retinal images in an eye with a small-aperture corneal inlay. J Cataract Refract Surg. 2015; 41:234–6.
11. Sayegh RR, Dohlman CH. Wide-angle fundus imaging through the Boston keratoprosthesis. Retina. 2013; 33:1188–92.
12. Luttrull JK, Dougherty PJ, Zhao H, Mainster MA. Concentric ring scanning laser ophthalmoscope artifacts and dysphotopsia in dif-fractive multifocal pseudophakia. Ophthalmic Surg Lasers Imaging. 2010; 41 Online.
13. Dunphy RW, Wentzolf JN, Subramanian M. . Structural fea-tures anterior to the retina represented in panoramic Scanning Laser fundus images. Ophthalmic Surg Lasers Imaging. 2008; 39:160–3.
14. Slotnick S, Sherman J. Panoramic autofluorescence: highlighting retinal pathology. Optom Vis Sci. 2012; 89:E575. 84.
15. Purbrick RM, Izadi S, Gupta A, Chong NV. Comparison of opto-map ultrawide-field imaging versus slit-lamp biomicroscopy for assessment of diabetic retinopathy in a real-life clinic. Clin Ophthal-mol. 2014; 8:1413–7.
16. Kornberg DL, Klufas MA, Yannuzzi NA. . Clinical utility of ultra-widefield imaging with the Optos optomap compared with indirect ophthalmoscopy in the setting of non-traumatic rhegmato-genous retinal detachment. Semin Ophthalmol. 2014; 1–8.
17. Pang CE, Freund KB. Ghost maculopathy: an artifact on near-in-frared reflectance and multicolor imaging masquerading as cho-rioretinal pathology. Am J Ophthalmol. 2014; 158:171–8.e2.
18. Deli A, Moetteli L, Ambresin A, Mantel I. Comparison of fundus autofluorescence images acquired by the confocal scanning laser ophthalmoscope (488 nm excitation) and the modified Topcon fun-dus camera (580 nm excitation). Int Ophthalmol. 2013; 33:635–43.
19. Kirkpatrick JN, Manivannan A, Gupta AK. . Fundus imaging in patients with cataract: role for a variable wavelength scanning laser ophthalmoscope. Br J Ophthalmol. 1995; 79:892–9.
20. Win PH, Young TA. Optos Panoramic200A fluorescein angiog-raphy for proliferative diabetic retinopathy with asteroid hyalosis. Semin Ophthalmol. 2007; 22:67–9.
21. Ogino K, Murakami T, Yoshimura N. Photocoagulation guided by wide-field fundus autofluorescence in eyes with asteroid hyalosis. Eye (Lond). 2014; 28:634–5.
22. Davies N. Comment on ‘Photocoagulation guided by wide-field fundus autofluorescence in eyes with asteroid hyalosis’: single and double pass of light in the ocular media. Eye (Lond). 2015; 29:149–50.
Table 1.
Parameter | Anterior non-retinal lesion group (n = 33) | Posterior non-retinal lesion group (n = 106) | p-value |
---|---|---|---|
Age (years) | 61.64 ± 12.46 | 59.49 ± 15.83 | 0.121* |
Sex (male:female) | 14:19 | 48:58 | 0.773† |
Laterality (OD:OS) | 13:20 | 59:47 | 0.102† |
Lens (phakic:pseudophakic) | 23:10 | 79:27 | 0.583† |
Lesion location | 0.228† | ||
Center | 20 | 47 | |
Periphery | 7 | 37 | |
Both | 6 | 22 | |
Lesion appearance-Green laser | <0.001† | ||
Hyperreflectivity | 1 | 83 | |
Hyporeflectivity | 31 | 18 | |
Mixed reflectivity | 1 | 5 | |
Lesion appearance-Red laser | <0.001† | ||
Hyperreflectivity | 1 | 33 | |
Hyporeflectivity | 32 | 57 | |
Mixed reflectivity | 0 | 16 | |
Lesion appearance-Autofluorescence | 0.485† | ||
Hyperreflectivity | 0 | 2 | |
Hyporeflectivity | 19 | 54 | |
Mixed reflectivity | 8 | 35 |
Table 2.
Variable* | B | S.E. | Wald | Sig. | Exp (B) |
95% CI for Exp (B) |
|
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
Hypo-reflectivity | -4.962 | 1.049 | 22.390 | <0.001 | 0.007 | 0.001 | 0.055 |
Mixed reflectivity | -2.809 | 1.487 | 3.568 | 0.059 | 0.060 | 0.003 | 1.111 |