Journal List > J Korean Ophthalmol Soc > v.56(8) > 1010044

Yoo, Kim, and Wee: Clinical Outcomes of Combined Photorefractive Keratectomy and Cataract Surgery in Patients with Granular Corneal Dystrophy

Abstract

Purpose

To evaluate the efficacy of combined photorefractive keratectomy (PRK) and cataract surgery in granular corneal dys-trophy (GCD) patients with corneal stromal haziness compromising vision and cataract and clinically significant lens opacity.

Methods

Medical records of 12 eyes that underwent PRK and cataract surgery between August 2009 and November 2013 in pa-tients with GCD and cataracts were retrospectively evaluated. All PRKs were performed with the VISX S4 IR ( VISX, Santa Clara, CA, USA). The double K SRK-T formula or double K Hoffer Q formula and postoperative corrected K were utilized to determine the intraocular lens power in patients with prior PRK. Postoperative best corrected visual acuity (BCVA), spherical equivalent, presence of the central island using topography analysis and recurrence of corneal opacity after combined PRK and cataract surgery were evaluated.

Results

In all eyes, the PRK was successful and 3 eyes showed recurrence of corneal opacities without visual impairment dur-ing a mean follow-up of 36.6 months. The mean BCVA improved with an average increase of 4.63 lines (minimum 1 line, max-imum 9 lines) and no patient showed any BCVA loss. Final spherical equivalent was -0.56 diopter (D) and the corneal central is-land was reported in only 1 eye. The Maloney method using the double-K formula with the SRK/T formula showed the lowest ab-solute error of 0.33 ± 0.25 D.

Conclusions

Combined PRK and cataract surgery are effective methods for improving BCVA if patients with GCD have both vis-ually significant diffuse corneal haze and clinically significant lens opacity.

References

1. Klintworth GK. Advances in the molecular genetics of corneal dystrophies. Am J Ophthalmol. 1999; 128:747–54.
crossref
2. Ferry AP, Benson WH, Weinberg RS. Combined granular-lattice ('Avellino') corneal dystrophy. Trans Am Ophthalmol Soc. 1997; 95:61–77.
3. Lee JH, Cristol SM, Kim WC. . Prevalence of granular corneal dystrophy type 2 (Avellino corneal dystrophy) in the Korean population. Ophthalmic Epidemiol. 2010; 17:160–5.
crossref
4. Rapuano CJ. Excimer laser phototherapeutic keratectomy. Int Ophthalmol Clin. 1996; 36:127–36.
crossref
5. Inoue T, Watanabe H, Yamamoto S. . Recurrence of corneal dystrophy resulting from an R124H Big-h3 mutation after photo-therapeutic keratectomy. Cornea. 2002; 21:570–3.
crossref
6. Lee JH, Stulting RD, Lee DH. . Exacerbation of granular cor-neal dystrophy type II (Avellino corneal dystrophy) after LASEK. J Refract Surg. 2008; 24:39–45.
crossref
7. Yi JH, Ha BJ, Kim SW. . The number of cases, cause and treat-ment of avellino corneal dystrophy exacerbated after LASIK. J Korean Ophthalmol Soc. 2008; 49:1415–24.
crossref
8. Kim EK. PTK in corneal dystrophy. Cornea. 2004; 23:323–4.
crossref
9. Reddy JC, Rapuano CJ, Nagra PK, Hammersmith KM. Excimer la-ser phototherapeutic keratectomy in eyes with corneal stromal dys-trophies with and without a corneal graft. Am J Ophthalmol. 2013; 155:1111–8.e2.
crossref
10. Jung SH, Han KE, Stulting RD. . Phototherapeutic keratec-tomy in diffuse stromal haze in granular corneal dystrophy type 2. Cornea. 2013; 32:296–300.
crossref
11. Ishikawa T, Hirano A, Inoue J. . Trial for new intraocular lens power calculation following phototherapeutic keratectomy. Jpn J Ophthalmol. 2000; 44:400–6.
crossref
12. Ishikawa T, Hirano A, Murai K. . Intraocular lens calculation for cataract treated with photorefractive keratectomy using ray tracing mathod. Jpn J Ophthalmol. 2000; 44:575.
13. Jung SH, Han KE, Sgrignoli B. . Intraocular lens power calcu-lations for cataract surgery after phototherapeutic keratectomy in granular corneal dystrophy type 2. J Refract Surg. 2012; 28:714–24.
crossref
14. Hong JP, Kim TI, Chung JL. . Analysis of deposit depth and morphology in granular corneal dystrophy type 2 using fourier do-main optical coherence tomography. Cornea. 2011; 30:729–38.
crossref
15. Lee WB, Himmel KS, Hamilton SM. . Excimer laser ex-acerbation of Avellino corneal dystrophy. J Cataract Refract Surg. 2007; 33:133–8.
crossref
16. Awwad ST, Di Pascuale MA, Hogan RN. . Avellino corneal dystrophy worsening after laser in situ keratomileusis: further clin-icopathologic observations and proposed pathogenesis. Am J Ophthalmol. 2008; 145:656–61.
crossref
17. Walter KA, Gagnon MR, Hoopes PC Jr, Dickinson PJ. Accurate in-traocular lens power calculation after myopic laser in situ kerato-mileusis, bypassing corneal power. J Cataract Refract Surg. 2006; 32:425–9.
crossref
18. Masket S, Masket SE. Simple regression formula for intraocular lens power adjustment in eyes requiring cataract surgery after ex-cimer laser photoablation. J Cataract Refract Surg. 2006; 32:430–4.
crossref
19. Holladay JT, Hill WE, Steinmueller A. Corneal power measure-ments using scheimpflug imaging in eyes with prior corneal re-fractive surgery. J Refract Surg. 2009; 25:862–8.
crossref
20. Hoffer KJ. Intraocular lens power calculation for eyes after re-fractive keratotomy. J Refract Surg. 1995; 11:490–3.
crossref
21. Feiz V, Mannis MJ, Garcia-Ferrer F. . Intraocular lens power calculation after laser in situ keratomileusis for myopia and hyper-opia: a standardized approach. Cornea. 2001; 20:792–7.
22. Wang L, Booth MA, Koch DD. Comparison of intraocular lens power calculation methods in eyes that have undergone LASIK. Ophthalmology. 2004; 111:1825–31.
crossref
23. Shammas HJ, Shammas MC. No-history method of intraocular lens power calculation for cataract surgery after myopic laser in situ keratomileusis. J Cataract Refract Surg. 2007; 33:31–6.
crossref
24. Wang L, Hill WE, Koch DD. Evaluation of intraocular lens power prediction methods using the American Society of Cataract and Refractive Surgeons Post-Keratorefractive Intraocular Lens Power Calculator. J Cataract Refract Surg. 2010; 36:1466–73.
crossref
25. Lee MO, Chung TY, Chung ES, Kee CW. Comparison of intra-ocular lens power calculation methods for cataract surgery after re-fractive surgery: a retrospective surgery. J Korean Ophthalmol Soc. 2010; 51:180–7.
crossref
26. Yun YJ, Kwang JY, Choi SH. Intraocular lens power calculation using Haigis-L method after corneal refractive surgery. J Korean Ophthalmol Soc. 2010; 51:664–9.
crossref
27. Holladay JT. Consultations in refract surgery. Refract Corneal Surg. 1989; 5:202–3.
28. Seitz B, Langenbucher A. Intraocular lens power calculation in eyes after corneal refractive surgery. J Refract Surg. 2000; 16:349–61.
crossref
29. Seitz B, Langenbucher A, Nguyen NX. . Underestimation of intraocular lens power for cataract surgery after myopic photo-refractive keratectomy. Ophthalmology. 1999; 106:693–702.
crossref
30. Speicher L. Intra-ocular lens calculation status after corneal re-fractive surgery. Curr Opin Ophthalmol. 2001; 12:17–29.
crossref
31. Savini G, Barboni P, Zanini M. Intraocular lens power calculation after myopic refractive surgery: theoretical comparison of different methods. Ophthalmology. 2006; 113:1271–82.
32. Camellin M, Calossi A. A new formula for intraocular lens power calculation after refractive corneal surgery. J Refract Surg. 2006; 22:187–99.
crossref
33. Jarade EF, Tabbara KF. New formula for calculating intraocular lens power after laser in situ keratomileusis. J Cataract Refract Surg. 2004; 30:1711–15.
crossref
34. Arce CG, Soriano ES, Weisenthal RW. . Calculation of intra-ocular lens power using Orbscan II quantitative area topography after corneal refractive surgery. J Refract Surg. 2009; 25:1061–74.
crossref
35. Qazi MA, Cua IY, Roberts CJ, Pepose JS. Determining corneal power using Orbscan II videokeratography for intraocular lens cal-culation after excimer laser surgery for myopia. J Cataract Refract Surg. 2007; 33:21–30.
crossref

Figure 1.
Anterior segment photos of delayed wound healing after photorefractive keratectomy (PRK) in a granular corneal dystrophy patient. Slit lamp examination revealed diffuse corneal punctate epithelial erosion (A, D) 10 days after PRK. After applying bandage contact lens, the punctate epithelial erosion much decreased but irregular corneal surface remained (B, E) 1 month after PRK. Using topical fluorometholone 0.1%, antibiotics and artificial tears, corneal surface smoothing (C, F) occurred after 4 months.
jkos-56-1170f1.tif
Figure 2.
(A, B, C) The preoperative anterior segment photography. (D, E, F) The postoperative anterior segment photography at day 3. (G, H, I) The postoperative 36-month anterior segment photography. (I) The anterior segment photography showing corneal opacity recurrence (white arrows) after laser surgery. This recurred cornea opacity did not affect the patients’ visual acuity.
jkos-56-1170f2.tif
Figure 3.
Representative (A) pre- and (B) post-operative photorefractive keratectomy photographs of the eye which showed central island postoperatively. Axial curvature maps after photorefractive keratectomy surgery (C) shows the central island 1 month after surgery. The topography (D) shows decrease of the central island postoperative 35 months. K = keratometry.
jkos-56-1170f3.tif
Table 1.
Variable methods to estimate postoperative expected keratometric values (K) shown in this study
Method Comment
Using Pre-K
 Clinical history20,27 K = K PRE + ∆ SEQ CP
 Speicher (Seitz et al28,29, Speicher30) K = 1.114 × K TPO ‒ 0.114 × K TPRE
Using Refractive change
 Savini et al31 K = ([1.338 + 0.0009856 × ∆ SEQ SP] ‒ 1)/(K POR/1,000)
 Camellin and Calossi32 K = ([1.3319 + 0.00113 × ∆ SEQ SP] ‒ 1)/(K POR/1,000)
 Jarade and Tabbara33 K = ([1.3375 + 0.0014 × ∆ SEQ CP] ‒ 1)/(K POR/1,000)
Using Post-K
 Orb scan 0 mm total mean power34 -
 Orb scan 2 mm total optical power35 -
 Maloney central topography36 K = 1.1141 × K TPO-CTR ‒ 5.5
 Koch and Wang37 K = 1.1141 × K TPO ‒ 6.1
 Savini et al38 K = 1.114 × K TPO ‒ 4.98
 Shammas et al39 no history K = 1.14 × K TPO ‒ 6.8

K = keratometry; Pre-K = pre-keratometry; K PRE = preoperative corneal power (in diopters); ∆ SEQ CP = spherical equivalent change, converted to corneal plane; K TPO = postoperative topographic simulated keratometry (Sim-K); K TPRE = preoperative topographic Sim-K; ∆ SEQ SP = spherical equivalent change, calculated in spectacle plane; K POR = average postoperative corneal power (in radius, mm); Post K = post-keratometry; K = postoperative central topographic power.

Table 2.
Demographics, visual outcomes and ablation depth of phototherapeutic keratectomy in patients with granular corneal dys-trophy
Patient Sex Age year Laterality BCVA (log MAR) Visual gain lines Ablation depths (um) Laser correction (Diopter)
Preoperative Postoperative 1 Postoperative 2
A F 73.0 R 0.9 0.5 0.3 4 74 -4.27
A F 71.5 L 0.7 0.6 0.2 4 96 -6.03
B F 71.2 R 1 0.4 0.3 4 75 -5.6
B F 71.2 L 0.7 0.5 0.4 2 75 -5.6
C M 64.2 R 0.4 0.2 0 6 66 -3.82
C M 64.2 L 0.5 0.2 0 7 48 -2.66
D F 69.4 R 1.2 0.7 0.4 5 96 -6.03
D F 70.3 L 0.9 0.7 0.3 4 71 -5.47
E F 67.6 R 0.9 1 0.1 7 96 -5.6
E F 67.6 L 0.5 0.7 0.4 2 90 -5.6
F F 51.6 L 0.4 0 0 6 88 -5.16
G F 87.3 R 0.5 0 0.5 0 49 -4.04
Mean 61.1 0.717 0.458 0.183 4.63 77 -4.99
SD 8.1 0.262 0.309 1.75 16.98 1.05

Postoperative 1 means BCVAs after first surgery and Postoperative 2 means BCVAs after second surgery. BCVA = best-corrected visual acuity; log MAR = logarithm of minimal angle of resolution; F = female; R = right; L = left; M = male; SD = standard deviation.

The left eye developed cystoid macular edema after cataract surgery (Irvine-Gass syndrome)

The neodymium-doped yttrium aluminium garnet (Nd:YAG) laser posterior capsulotomy was performed for both eyes on April 21, 2011.

Table 3.
Ocular biometric parameters and refraction in patients with granular corneal dystrophy
Case First operation Preoperative K (D) AXL (MASTER) Mean ACD (MASTER) Preoperative SE Hyperopic shift I Final SE IOL power(D) Kinds of IOL
A PE & PCL 44.75 24.3 2.24 0.375 4.75 -1.625 26 SA60AT
A PE & PCL 44.00 24.2 - -0.75 6.25 -1.25 29 SA60AT
B PE & PCL 45.00 26.4 - -6.375 5.75 0.125 21 SN60WF
B PE & PCL 44.38 26.2 - -7 6.25 1.75 21 SN60WF
C PE & PCL 42.63 24.1 3.32 1.75 4.5 0.75 26.5 SN60WF
C PE & PCL 42.87 24.2 3.35 2.5 3.25 1.375 23.5 SN60WF
D PRK 43.50 24.1 2.67 - 8.125 -0.625 30 SN60WF
D PRK 43.50 23.9 2.58 - 8.125 -1.875 30 SN60WF
E PRK 44.25 22.4 - - 7.25 NA 24 SN60WF
E PE & PCL 44.63 22.5 - - 8.125 NA 23.5 SN60WF
F PE & PCL 44.44 23.1 2.62 - 7.125 -0.75 28.5 SA60AT
G PRK 45.06 23.2 2.49 0.875 7.125 -0.5 27 SA60AT
Mean 44.08 23.6 2.75 1.08 6.46 -0.56 27.56
SD 0.80 0.74 0.42 1.84 1.73 1.12 2.24
The number of patients included in Mean, SD n = 12 n = 12 n = 10 n = 7 n = 5 n = 10 n = 8§ n = 8§

K = keratometry; AXL = axial length; ACD = anterior chamber depth; SE = spherical equivalent; IOL = intra-ocular lens; PE & PCL = phacoemulsification and post chamber lens insertion; PRK = photorefractive keratectomy; NA = not applicable; SD = standard deviation.

Patients undergone intraocular lens exchange after PRK;

The patients who failed in automatic refraction (AR) and manifest refraction (MR) for poor light streak, preoperatively, exclusion;

Myopia (B);

§ Myopia (B), The patients (who were) not taken IOL exchange operation after inserting IOL (which was) targeted for emmetropia (E).

Table 4.
Postoperative recovery and complication in patients with granular corneal dystrophy
Patients (days) Epithelial defect (days) Epithelial smoothening (days) Central island Cornea opacity recurrence Duration till Final follow up (days)
(days)
A 10 41§ - - 248
A 10 24 - - 801
B 10 20 - - 1,004
B 10 20 - - 1,004
C 10 - - + 1,501
C 10 - - + 1,501
D 10 132 - + 843
D 12 52 - - 507
E 10 139 - - 1,328
E 3 132 + - 1,321
F 4 20 - - 248
G 10 55 - - 283
Mean 9.08 66.00 - - 882.42
SD 2.68 53.00 - - 476.65
SD = standard deviation.

The period taken for disappearing of the corneal erosions after laser surgery;

The period taken for corneal surface smoothening after laser surgery;

Definition: central area of steeper corneal tissue having increased refractive power, as seen on topography, which is surrounded by a flattened corneal region with reduced refractive power;

§ The infective keratitis developed (or detected) at 28 days after laser surgery and recovered at 41 days after laser surgery.

Table 5.
Mean prediction and absolute errors according to IOL power calculation methods in patients undergone cataract surgery af-ter PRK
Calculation method Methods to estimate postoperative expected K Prediction error (D) Absolute error (D)
SRK/T double K Total mean power 2 mm -1.13 ± 0.63 (-2.06, -0.29) 1.13 ± 0.63 (0.29, 2.06)
Wang-Koch-Maloney -0.75 ± 0.40 (-1.38, -0.30) 0.75 ± 0.41 (0.30, 1.38)
Shammas and Shammas -1.27 ± 0.55 (-2.11, -0.45) 1.27 ± 0.55 (0.45, 2.11)
Seitz -0.55 ± 0.42 (-1.24, 0.03) 0.56 ± 0.40 (0.03, 1.24)
Maloney -0.14 ± 0.41 (-0.77, 0.32) 0.33 ± 0.25 (0.05, 0.77)
Total mean power 0 mm -1.57 ± 1.11 (-3.30, -0.47) 1.58 ± 1.11 (0.47, 3.29)
Hoffer Q double K Total mean power 2 mm -0.94 ± 0.76 (-2.09, 0.16) 0.99 ± 0.68 (0.16, 2.09)
Wang-Koch-Maloney -1.08 ± 0.76 (-2.12, -0.00) 1.08 ± 0.76 (0.04, 2.12)
Shammas -0.55 ± 0.61 (-1.38, 0.13) 0.59 ± 0.56 (0.11, 1.38)
Seitz -0.35 ± 0.63 (-1.24, 0.49) 0.59 ± 0.36 (0.24, 1.24)
Maloney -0.07 ± 0.62 (-0.77, 0.77) 0.53 ± 0.23 (0.15, 0.77)
Total mean power 0 mm -1.39 ± 1.23 (-3.34, -0.03) 1.39 ± 1.23 (0.03, 3.34)
Hoffer Q single K Total mean power 2 mm -0.31 ± 0.77 (-1.59, 0.71) 0.55 ± 0.59 (0.00, 1.59)
Wang-Koch-Maloney +0.05 ± 0.59 (-0.68, 0.63) 0.49 ± 0.25 (0.00, 0.68)
Shammas -0.45 ± 0.70 (-1.38, 0.56) 0.67 ± 0.43 (0.10, 1.38)
Seitz -0.24 ± 0.59 (-0.55, 1.02) 0.51 ± 0.32 (0.17, 1.02)
Maloney +0.62 ± 0.60 (-0.10, 1.22) 0.69 ± 0.51 (0.09, 1.22)
Total mean power 0 mm -0.74 ± 1.22 (-2.76, 0.54) 0.92 ± 1.07 (0.07, 2.76)
SRK/T single K Total mean power 2 mm +0.87 ± 0.81 (-0.65, 1.49) 1.09 ± 0.39 (0.65, 1.49)
Wang-Koch-Maloney +1.17 ± 0.60 (0.15, 1.80) 1.17 ± 0.60 (0.15, 1.80)
Shammas +0.75 ± 0.51 (-0.06, 1.22) 0.77 ± 0.47 (0.06, 1.22)
Seitz +1.33 ± 0.51 (0.46, 1.84) 1.33 ± 0.51 (0.46, 1.84)
Maloney +1.64 ± 0.61 (0.61, 2.28) 1.64 ± 0.61 (0.60, 2.28)
  Total mean power 0 mm +0.51 ± 1.21 (-1.65, 1.63) 1.07 ± 0.65 (0.03, 1.65)

Values are presented as IOL = intra-ocular lens; mean ± SD (range).; PRK = photorefractive keratectomy; K = keratometry.

TOOLS
Similar articles