Abstract
Purpose:
To evaluate the clinical features and risk factors of hemorrhagic complications in polypoidal choroidal vasculopathy (PCV) using spectral domain-optical coherence tomography (SD-OCT) and indocyanine green angiography (ICGA).
Methods:
We respectively reviewed the data from 43 patients (45 eyes) diagnosed with PCV who received ICGA between January 2010 and October 2013. The patients were divided into 2 groups: 16 patients (17 eyes) with subretinal hemorrhage (su-bretinal hemorrhagic PCV group) and 27 patients (28 eyes) without subretinal hemorrhage (control group). Based on the ICGA and SD-OCT findings, the number, morphology, location, size of polyps, pigment epithelial detachment (PED), and serous reti-nal detachment (SRD) were measured and compared between the 2 groups. We also analyzed systemic diseases and history of antithrombotic agents associated with subretinal hemorrhage in PCV.
Results:
The size of polyps measured by ICGA was significantly different between the 2 groups ( p = 0.006). As the size of polyps increased, the size of subretinal hemorrhage, height of PED, base diameter and height of SRD increased ( p < 0.05). No stat-istical correlation with systemic diseases and antithrombotic agents was observed ( p > 0.05).
Conclusions:
The patients in the subretinal hemorrhagic PCV group had larger-sized polyps than the patients in the control group. This result suggests that eyes with larger-sized polyps are at risk for hemorrhagic complications and require more careful follow-up and observation in PCV treatment-naïve patients.
References
1. Yannuzzi LA, Sorenson J, Spaide RF, Lipson B. Idiopathic poly-poidal choroidal vasculopathy (IPCV). Retina. 1990; 10:1–8.
2. Yannuzzi LA, Ciardella A, Spaide RF, et al. The expanding clinical spectrum of idiopathic polypoidal choroidal vasculopathy. Arch Ophthalmol. 1997; 115:478–85.
3. Yannuzzi LA, Wong DW, Sforzolini BS, et al. Polypoidal choroidal vasculopathy and neovascularized age-related macular degenera-tion. Arch Ophthalmol. 1999; 117:1503–10.
4. Tateiwa H, Kuroiwa S, Gaun S, et al. Polypoidal choroidal vascul-opathy with large vascular network. Graefes Arch Clin Exp Ophthalmol. 2002; 240:354–61.
5. Woon WH, Fitzke FW, Bird AC, Marshall J. Confocal imaging of the fundus using a scanning laser ophthalmoscope. Br J Ophthalmol. 1992; 76:470–4.
6. Bartch DU, Weinreb RN, Zinser G, Freeman WR. Confocal scan-ning infrared laser ophthalmoscopy for indocyanine green angiography. Am J Ophthalmol. 1995; 120:642–51.
7. Spaide RF, Yannuzzi LA, Slakter JS, et al. Indocyanine green vid-eoangiography of idiopathic polypoidal choroidal vasculopathy. Retina. 1995; 15:100–10.
8. Sa HS, Cho HY, Kang SW. Optical coherence tomography of idio-pathic polypoidal choroidal vasculopathy. Korean J Ophthalmol. 2005; 19:275–80.
9. Yuzawa M, Mori R, Kawamura A. The origins of polypoidal cho-roidal vasculopathy. Br J Ophthalmol. 2005; 89:602–7.
10. Imamura Y, Engelbert M, Iida T, et al. Polypoidal choroidal vascul-opathy: a review. Surv Ophthalmol. 2010; 55:501–15.
11. Kokame GT. Polypoidal choroidal vasculopathy-a type I poly-poidal subretinal neovasculopathy. Open Ophthalmol J. 2013; 7:82–4.
12. Laude A, Cackett PD, Vithana EN, et al. Polypoidal choroidal vas-culopathy and neovascular age-related macular degeneration: same or different disease? Prog Retin Eye Res. 2010; 29:19–29.
13. Byeon SH, Lee SC, Oh HS, et al. Incidence and clinical patterns of polypoidal choroidal vasculopathy in Korean patients. Jpn J Ophthalmol. 2008; 52:57–62.
14. Koh AH. Expert PCV Panel. Chen LJ, et al. Polypoidal choroidal asculopathy: evidence-based guidelines for clinical diagnosis and treatment. Retina. 2013; 33:686–716.
15. Uyama M, Wada M, Nagai Y, et al. Polypoidal choroidal vasculop-athy: natural history. Am J Ophthalmol. 2002; 133:639–48.
16. Jung JH, Lee JK, Lee JE, Oum BS. Results of vitrectomy for break-through vitreous hemorrhage associated with age-related macular degeneration and polypoidal choroidal vasculopathy. Retina. 2010; 30:865–73.
17. Glatt H, Machemer R. Experimental subretinal hemorrhage in rabbits. Am J Ophthalmol. 1982; 94:762–73.
18. Cho HJ, Lee DW, Cho SW, et al. Hemorrhagic complications after intravitreal ranibizumab injection for polypoidal choroidal vasculopathy. Can J Ophthalmol. 2012; 47:170–5.
19. Hirami Y, Tsujikawa A, Otani A, et al. Hemorrhagic complications after photodynamic therapy for polypoidal choroidal vasculopathy. Retina. 2007; 27:335–41.
20. Lee PY, Lee WK. Changes of network vessels after photodynamic therapy in polypoidal choroidal vasculopathy. J Korean Ophthalmol Soc. 2006; 47:1751–8.
21. Lee JK, Lee JW, Lee JE, Oum BS. Intravitreal bevacizumab with or without photodynamic therapy for the treatment of polypoidal cho-roidal vasculopathy. J Korean Ophthalmol Soc. 2010; 51:684–92.
22. Cackett P, Wong D, Yeo I. A classification system for polypoidal choroidal vasculopathy. Retina. 2009; 29:187–91.
23. Lee JW, Kim IT. Epidemiologic and clinical characteristics of pol-ypoidal choroidal vasculopathy in Korean patients. J Korean Ophthalmol Soc. 2007; 48:63–74.
24. Nakashizuka H, Mitsumata M, Okisaka S, et al. Clinicopathologic findings in polypoidal choroidal vasculopathy. Invest Ophthalmol Vis Sci. 2008; 49:4729–37.
Table 1.
Parameter | Group (%) | Total (%) | p-value | |
---|---|---|---|---|
Subretinal hemorrhagic PCV | Non-subretinal hemorrhagic PCV | |||
Number of patients | 16 | 27 | 43 | |
Number of eyes | 17 | 28 | 45 | |
Mean age (years) | 69.7 ± 2.1 | 62.1 ± 3.6 | 64.9 ± 2.4 | |
Gender (%) | ||||
Male | 12 (75) | 19 (70.4) | 31 (72.1) | |
Female | 4 (25) | 8 (29.6) | 12 (27.9) | |
Right:left (eyes) | 5:12 | 17:11 | 22:27 | |
BCVA (log MAR) | 0.85 ± 0.15 | 0.59 ± 0.09 | 0.69 ± 0.08 | 0.127† |
Underlying disease (%) | ||||
Hypertension | 9 (56.3) | 11 (40.7) | 21 (48.8) | 0.361∗ |
DM | 3 (18.8) | 5 (18.5) | 8 (18.6) | 1.000∗ |
Heart attack/CVA | 4 (25.0) | 3 (11.1) | 7 (16.2) | 0.394∗ |
Cancer | 2 (12.5) | 1 (3.7) | 3 (6.9) | 0.545∗ |
Anticoagulant | 4 (25.0) | 2 (7.4) | 6 (13.9) | 0.174∗ |
Table 2.
Subretinal hemorrhagic PCV (n = 17) | Non-subretinal hemorrhagic PCV (n = 28) | Total (n = 45) | p-value | |
---|---|---|---|---|
Polyps location | 0.535∗ | |||
Subfovea | 8 (47.1) | 11 (39.3) | 19 (42.2) | |
Juxtafovea | 3 (17.6) | 10 (35.7) | 13 (28.9) | |
Extrafovea | 6 (35.3) | 7 (25.0) | 13 (28.9) | |
Number of polyps | 0.414∗ | |||
n ≤ 2 | 7 (41.2) | 8 (28.6) | 15 (33.3) | |
3 ≤ n < 5 | 2 (11.8) | 8 (28.6) | 10 (22.2) | |
n ≥ 5 | 8 (47.1) | 12 (42.9) | 20 (44.4) | |
Polyps morphology | 0.744∗ | |||
Cluster, microaneurysm | 8 (47.1) | 17 (60.7) | 25 (55.6) | |
Dilated, macroaneurysm | 7 (41.2) | 8 (28.6) | 15 (33.3) | |
Vessel malformation | 2 (11.8) | 3 (10.7) | 5 (11.1) | |
Polyps size (μ m) | 178 ± 16 | 121 ± 9 | 142 ± 9 | 0.006† |
≤150 | 7 (41.2) | 21 (75) | 28 (62.2) | |
151-250 | 7 (41.2) | 7 (25) | 14 (31.1) | |
>250 | 3 (17.6) | 0 (0) | 3 (6.7) |
Table 3.
Subretinal hemorrhagic PCV | Non-subretinal hemorrhagic PCV | Total | p-value∗ | |
---|---|---|---|---|
PED base (μ m) | 2,815 ± 424 | 1,164 ± 137 | 1,765 ± 212 | p < 0.001 |
PED height (μ m) | 657 ± 93 | 171 ± 17 | 347 ± 50 | p < 0.001 |
SRD base (μ m) | 3,762 ± 571 | 1,940 ± 272 | 2,630 ± 298 | 0.004 |
SRD height (μ m) | 437 ± 78 | 118 ± 19 | 234 ± 38 | p < 0.001 |
Table 4.
Polyps size (μ m) | ||
---|---|---|
r | p-value∗ | |
Subretinal hemorrhage size | 0.616 | 0.008 |
PED base | 0.202 | 0.189 |
PED height | 0.399 | 0.007 |
SRD base | 0.404 | 0.007 |
SRD height | 0.466 | 0.001 |