Journal List > J Korean Ophthalmol Soc > v.55(11) > 1009842

Song and Kim: Comparison of OCT Parameters between the Dominant and Nondominant Eye

Abstract

Purpose

To evaluate the anatomical difference between the dominant and nondominant eyes in healthy, young adults by measuring macular, peripapillary retinal nerve fiber layer (PRNFL), and macular ganglion cell layer (MGCL) thicknesses.

Methods

Two hundred healthy adults were recruited and assessed for ocular dominance using ‘a hole in the card test’. PRNFL, macular and MGCL thicknesses of both eyes were measured using spectral domain optical coherence tomography (OCT).

Results

There were no statistically significant differences for average thicknesses of MGCL in each of the six areas between the dominant and nondominant eyes. No difference was observed between temporal, inferior, average PRNFL thickness and macular thickness in dominant and nondominant eyes.

Conclusions

There was no intraocular anatomical difference between the dominant and nondominant eyes in healthy, young adults.

References

1. Carey DP. Vision research: losing sight of eye dominance. Curr Biol. 2001; 11:R828–30.
crossref
2. Seyal M, Sato S, White BG, Porter RJ. Visual evoked potentials and eye dominance. Electroencephalogr Clin Neurophysiol. 1981; 52:424–8.
crossref
3. Taghavy A, Kügler CF. Pattern reversal visual evoked potentials (white-black- and colour-black-PVEPs) in the study of eye dominance. Eur Arch Psychiatry Neurol Sci. 1987; 236:329–32.
crossref
4. Mendola JD, Conner IP. Eye dominance predicts fMRI signals in human retinotopic cortex. Neurosci Lett. 2007; 414:30–4.
crossref
5. Rombouts SA, Barkhof F, Sprenger M, et al. The functional basis of ocular dominance: functional MRI (fMRI) findings. Neurosci Lett. 1996; 221:1–4.
crossref
6. Mapp AP, Ono H, Barbeito R. What does the dominant eye dominate? A brief and somewhat contentious review. Percept Psychophys. 2003; 65:310–7.
crossref
7. Hubel DH, Wiesel TN. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol. 1970; 206:419–36.
crossref
8. Wiesel TN. Postnatal development of the visual cortex and the influence of environment. Nature. 1982; 299:583–91.
crossref
9. Curcio CA, Allen KA. Topography of ganglion cells in human retina. J Comp Neurol. 1990; 300:5–25.
crossref
10. Rosbnbach O. Über monokulare Vorherrschaft beim binokularen Sehen. Munchener Medizinische Wochenschrift. 1903; 30:1290–2.
11. Jain S, Arora I, Azar DT. Success of monovision in presbyopes: review of the literature and potential applications to refractive surgery. Surv Ophthalmol. 1996; 40:491–9.
crossref
12. Koo BS, Cho YA. The relationship of dominant eye, dominant hand, and deviated eye in strabismus. J Korean Ophthalmol Soc. 1996; 37:1277–82.
13. Jeoung JW, Lee MJ, Hwang JM. Bilateral lateral rectus recession versus unilateral recess-resect procedure for exotropia with a dominant eye. Am J Ophthalmol. 2006; 141:683–8.
crossref
14. Samarawickrama C, Wang JJ, Huynh SC, et al. Macular thickness, retinal thickness, and optic disk parameters in dominant compared with nondominant eyes. J AAPOS. 2009; 13:142–7.
crossref
15. Cheng CY, Yen MY, Lin HY, et al. Association of ocular dominance and anisometropic myopia. Invest Ophthalmol Vis Sci. 2004; 45:2856–60.
crossref
16. Lee MS, Cho KJ, Cho WH, et al. Retinal nerve fiber layer thickness and optic disc parameters in dominant compared with non-dominant eyes. J Korean Ophthalmol Soc. 2013; 54:784–8.
crossref
17. Choi JA, Kim JS, Park HY, et al. Retinal nerve fiber layer thickness profiles associated with ocular laterality and dominance. Neurosci Lett. 2014; 558:197–202.
crossref
18. Chia A, Jaurigue A, Gazzard G, et al. Ocular dominance, laterality, and refraction in Singaporean children. Invest Ophthalmol Vis Sci. 2007; 48:3533–6.
crossref
19. Pekel G, Alagöz N, Pekel E, et al. Effects of ocular dominance on contrast sensitivity in middle-aged people. ISRN Ophthalmol. 2014; 2014:903084.
crossref
20. Cho KJ, Kim SY, Yang SW. The refractive errors of dominant and non-dominant eyes. J Korean Ophthalmol Soc. 2009; 50:275–9.
crossref
21. Lopes-Ferreira D, Neves H, Queiros A, et al. Ocular dominance and visual function testing. Biomed Res Int. 2013; 2013:238943.
crossref
22. Gur RC, Turetsky BI, Matsui M, et al. Sex differences in brain gray and white matter in healthy young adults: correlations with cognitive performance. J Neurosci. 1999; 19:4065–72.
crossref
23. Hiscock M, Israelian M, Inch R, et al. Is there a sex difference in human laterality? II. An exhaustive survey of visual laterality studies from six neuropsychology journals. J Clin Exp Neuropsychol. 1995; 17:590–610.
crossref
24. Carpineto P, Ciancaglini M, Zuppardi E, et al. Reliability of nerve fiber layer thickness measurements using optical coherence tomography in normal and glaucomatous eyes. Ophthalmology. 2003; 110:190–5.
crossref
25. Schuman JS, Pedut-Kloizman T, Pakter H, et al. Optical coherence tomography and histologic measurements of nerve fiber layer thickness in normal and glaucomatous monkey eyes. Invest Ophthalmol Vis Sci. 2007; 48:3645–54.
crossref
26. Blumenthal EZ, Parikh RS, Pe'er J, et al. Retinal nerve fibre layer imaging compared with histological measurements in a human eye. Eye (Lond). 2009; 23:171–5.
crossref
27. Sung MS, Yoon JH, Park SW. Diagnostic Validity of Macular Ganglion Cell-Inner Plexiform Layer Thickness Deviation Map Algorithm Using Cirrus HD-OCT in Preperimetric and Early Glaucoma. J Glaucoma. 2014; 23:e144–51.
crossref
28. Firat PG, Ozsoy E, Demirel S, et al. Evaluation of peripapillary retinal nerve fiber layer, macula and ganglion cell thickness in amblyopia using spectral optical coherence tomography. Int J Ophthalmol. 2013; 6:90–4.
29. Park KA, Park DY, Oh SY. Analysis of spectral-domain optical coherence tomography measurements in amblyopia: a pilot study. Br J Ophthalmol. 2011; 95:1700–6.
crossref
30. Kim YW, Kim SJ, Yu YS. Spectral-domain optical coherence tomography analysis in deprivational amblyopia: a pilot study with unilateral pediatric cataract patients. Graefes Arch Clin Exp Ophthalmol. 2013; 251:2811–9.
crossref
31. Tugcu B, Araz-Ersan B, Kilic M, et al. The morpho-functional evaluation of retina in amblyopia. Curr Eye Res. 2013; 38:802–9.
crossref

Table 1.
Sex distribution and mean age differences by ocular dominance (n = 200 subjects, male = 123 subjects, female = 77 subjects)
Ocular dominance
p-value
Right eye (n) Left eye (n)
Total
 Male 78.0% (96) 22.0% (27) 0.724
 Female 80.5% (62) 19.5% (15)
Age (years) 29.09 28.26 0.125
Table 2.
Mean refractions and axial lengths in dominant and non-dominant eyes (n = 400 eyes)
Total (n = 400) Dominant eye (n = 200) Non-dominant eye (n = 200) p-value
Refraction (D) ± SD
 Sph −2.31 ± 2.49 −2.33 ± 2.51 −2.29 ± 2.48 0.441
 Cyl −0.78 ± 0.77 −0.77 ± 0.72 −0.81 ± 0.86 0.354
 ME −2.54 ± 2.50 −2.52 ± 2.47 −2.56 ± 2.54 0.554
Axial length (mm) 24.09 ± 1.18 24.09 ± 1.19 24.08 ± 1.17 0.694

D = diopter; SD = standard deviation; Sph = spherical refraction; Cyl = cylindrical refraction; ME = mean equivalent.

Table 3.
Optical coherence tomography parameters of dominant and non-dominant eyes (n = 400 eyes)
Total(n = 400) Dominant eye(n = 200) Non-dominant eye(n = 200) p-value
PRNFL thickness (um)
 Inferior Q 120.07 ± 21.69 120.11 ± 15.45 120.02 ± 26.54 0.962
 Superior Q 118.93 ± 16.04 117.18 ± 15.67 120.68 ± 16.24 <0.001
 Nasal Q 79.85 ± 16.79 81.74 ± 17.03 77.96 ± 16.36 <0.001
 Temporal Q 62.59 ± 11.89 63.15 ± 12.16 62.04 ± 11.62 0.206
 Average 95.21 ± 8.04 95.46 ± 8.09 94.97 ± 8.01 0.175
Macular thickness (um)
 CST 254.51 ± 19.69 254.89 ± 19.81 254.12 ± 19.61 0.265
 CAT 277.30 ± 18.52 277.27 ± 18.18 277.33 ± 18.90 0.922
MGCL thickness (um)
 Average 81.03 ± 7.06 81.21 ± 5.67 80.78 ± 8.17 0.453
 Minimum 77.06 ± 12.15 77.62 ± 10.87 76.71 ± 12.70 0.473
 S 83.00 ± 5.33 83.05 ± 5.31 82.94 ± 5.37 0.785
 SN 84.11 ± 5.36 84.02 ± 5.60 84.21 ± 5.14 0.556
 ST 81.96 ± 4.95 82.10 ± 5.14 81.82 ± 4.77 0.385
 I 78.73 ± 5.98 78.73 ± 6.01 78.72 ± 5.98 0.983
 IN 81.62 ± 5.55 81.62 ± 5.66 81.62 ± 5.46 1.000
 IT 81.89 ± 5.07 81.86 ± 5.23 81.91 ± 4.92 0.865

Values are presented as mean ± SD.

PRNFL = peripapillary retinal nerve fiber layer; MGCL = macular ganglion cell layer; Q = quadrant; CST = central subfield thickness; CAT = cube average thickness; S = superior; SN = superior nasal; ST = superior temporal; I = inferior; IN = inferior nasal; IT = inferior temporal.

TOOLS
Similar articles