Journal List > J Korean Ophthalmol Soc > v.54(12) > 1009557

Kim, Kim, and Kim: Comparison of Diagnostic Power Among OCT Parameters According to Peripapillary Atrophy in High Myopic Glaucoma

Abstract

Purpose

To evaluate diagnostic power to detect glaucoma in high myopic eyes with peripapillary atrophy among optical coherence tomography (OCT) parameters.

Methods

Fifty eyes of 31 glaucoma patients with myopia of -6.00 diopters or less and a peripapillary atrophy (PPA) were classified into a group with a PPA located beyond the circumpapillary OCT scan circle (group A) and a group with a PPA confined within the scan circle (group B). Circumpapillary retinal nerve fiber layer (cpRNFL), total macula (TM), and ganglion cell-inner plexiform layer (GCIPL) thickness were measured in each group and the diagnostic power of each measurement was compared by area under the receiver operating characteristic curve (AUC).

Results

There were no significant differences in the age, gender, intraocular pressure, optic disc size, and mean deviation between the 2 groups. The spherical equivalent of group A was significantly larger than group B (mean -11.9 vs. -7.3 diopters, p = 0.002). In group A, the AUC of average GCIPL thickness was significantly higher than average cpRNFL and average TM thickness (p < 0.05). Additionally, when comparing parameters that showed the highest AUC value in each method, the AUC of GCIPL thickness was significantly higher than cpRNFL thickness (p = 0.046). In subgroup analysis of spherical equivalent matching between the 2 groups (subgroup A and B), the highest AUC value of GCIPL thickness was significantly higher than cpRNFL and TM thickness in subgroup A (p < 0.05). In group B and subgroup B, there was no statistical significance among AUC values of the 3 different methods (p > 0.05).

Conclusions

Assessment of GCIPL parameters is a useful technique for glaucoma diagnosis in patients with high myopia and PPA extending beyond circumpapillary OCT scan circle.

References

1. Tomlinson A, Phillips CI. Ratio of optic cup to optic disc: in rela-tion to axial length of eyeball and refraction. Br J Ophthamol. 1969; 53:765–8.
crossref
2. Chihara E, Sawada A. Atypical nerve fiber layer defects in high myopes with high-tension glaucoma. Arch Ophthalmol. 1990; 108:228–32.
crossref
3. Cahane M, Bartov E. Axial length and scleral thickness effect on susceptibility to glaucomatous damage: a theoretical model implementing Laplace's law. Ophthalmic Res. 1992; 24:280–4.
crossref
4. Avetisov ES, Savitskaya NF. Some features of ocular micro-circulation in myopia. Ann Ophthalmol. 1977; 9:1261–4.
5. Shih YF, Horng IH, Yang CH. . Ocular pulse amplitude in myopia. J Ocul Pharmacol. 1991; 7:83–7.
crossref
6. To'mey KF, Faris BM, Jalkh AE, Nasr AM. Ocular pulse in high myopia: A study of 40 eyes. Ann Ophthalmol. 1981; 13:569–71.
7. Ozdek SC, Onol M, Gürelik G, Hasanreisoglu B. Scanning laser polarimetry in normal subjects and patients with myopia. Br J Ophthalmol. 2000; 84:264–7.
crossref
8. Tay E, Seah SK, Chan SP. . Optic disk ovality as an index of tilt and its relationship to myopia and perimetry. Am J Ophthalmol. 2005; 139:247–52.
crossref
9. Chen TC, Cense B, Pierce MC. . Spectral domain optical co-herence tomography: ultra-high speed, ultra-high resolution oph-thalmic imaging. Arch Ophthalmol. 2005; 123:1715–20.
10. Melo GB, Libera RD, Barbosa AS. . Comparison of optic disk and retinal nerve fiber layer thickness in nonglaucomatous and glaucomatous patients with high myopia. Am J Ophthalmol. 2006; 142:858–60.
crossref
11. Leung CK, Cheng AC, Chong KK. . Optic disc measurements in myopia with optical coherence tomography and confocal scan-ning laser ophthalmoscopy. Invest Ophthalmol Vis Sci. 2007; 48:3178–83.
crossref
12. Jonas JB, Nguyen XN, Gusek GC, Naumann GO. Parapapillary chorioretinal atrophy in normal and glaucoma eyes. I: Morphometric data. Invest Ophthalmol Vis Sci. 1989; 30:908–18.
13. Jonas JB, Naumann GO. Parapapillary chorioretinal atrophy in normal and glaucoma eyes. II: Correlations. Invest Ophthalmol Vis Sci. 1989; 30:919–26.
14. Jonas JB, Fernández MC, Naumann GO. Glaucomatous para-papillary atrophy. Occurrence and correlations. Arch Ophthalmol. 1992; 110:214–22.
15. Park KH, Tomita G, Liou SY, Kitazawa Y. Correlation between peripapillary atrophy and optic nerve damage in normal-tension glaucoma. Ophthalmology. 1996; 103:1899–906.
crossref
16. Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol. 1989; 107:453–64.
crossref
17. Zeimer R, Asrani S, Zou S. . Quantitative detection of glau-comatous damage at the posterior pole by retinal thickness mapping. A pilot study. Ophthalmology. 1998; 105:224–31.
18. Greenfield DS, Bagga H, Knighton RW. Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography. Arch Ophthalmol. 2003; 121:41–6.
crossref
19. Leung CK, Chan WM, Yung WH. . Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study. Ophthalmology. 2005; 112:391–400.
20. Tan O, Li G, Lu AT. . Advanced Imaging for Glaucoma Study Group. Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. Ophthalmology. 2008; 115:949–56.
21. Kim NR, Lee ES, Seong GJ. . Comparing the ganglion cell complex and retinal nerve fiber layer measurements by Fourier do-main OCT to detect glaucoma in high myopia. Br J Ophthalmol. 2011; 95:1115–21.
22. Shoji T, Nagaoka Y, Sato H, Chihara E. Impact of high myopia on the performance of SD-OCT parameters to detect glaucoma. Graefes Arch Clin Exp Ophthalmol. 2012; 250:1843–9.
crossref
23. Nonaka A, Hangai M, Akagi T. . Biometric features of peri-papillary atrophy beta in eyes with high myopia. Invest Ophthalmol Vis Sci. 2011; 52:6706–13.
crossref
24. O'Donnell C, Hartwig A, Radhakrishnan H. Correlations between refractive error and biometric parameters in human eyes using the LenStar 900. Cont Lens Anterior Eye. 2011; 34:26–31.
25. Hoh ST, Lim MC, Seah SK. . Peripapillary retinal nerve fiber layer thickness variations with myopia. Ophthalmology. 2006; 113:773–7.
crossref
26. Hirasawa H, Tomidokoro A, Araie M. . Peripapillary retinal nerve fiber layer thickness determined by spectral-domain optical coherence tomography in ophthalmologically normal eyes. Arch Ophthalmol. 2010; 128:1420–6.
crossref
27. Leung CK, Mohamed S, Leung KS. . Retinal nerve fiber layer measurements in myopia: An optical coherence tomography study. Invest Ophthalmol Vis Sci. 2006; 47:5171–6.
crossref
28. Rauscher FM, Sekhon N, Feuer WJ, Budenz DL. Myopia affects retinal nerve fiber layer measurements as determined by optical co-herence tomography. J Glaucoma. 2009; 18:501–5.
crossref
29. Na JH, Moon BG, Sung KR. . Characterization of peripapillary atrophy using spectral domain optical coherence tomography. Korean J Ophthalmol. 2010; 24:353–9.
crossref
30. Manjunath V, Shah H, Fujimoto JG, Duker JS. Analysis of peri-papillary atrophy using spectral domain optical coherence tomography. Ophthalmology. 2011; 118:531–6.
crossref
31. Kang SH, Hong SW, Im SK. . Effect of myopia on the thickness of the retinal nerve fiber layer measured by Cirrus HD optical coher-ence tomography. Invest Ophthalmol Vis Sci. 2010; 51:4075–83.
crossref
32. Lam DS, Leung KS, Mohamed S. . Regional variations in the relationship between macular thickness measurements and myopia. Invest Ophthalmol Vis Sci. 2007; 48:376–82.
crossref
33. Choi SW, Lee SJ. Thickness changes in the fovea and peripapillary retinal nerve fiber layer depend on the degree of myopia. Korean J Ophthalmol. 2006; 20:215–9.
crossref
34. Kim SH, Park JY, Park TK, Ohn YH. Use of spectral-domain opti-cal coherence tomography to analyze macular thickness according to refractive error. J Korean Ophthalmol Soc. 2011; 52:1286–95.
crossref

Figure 1.
Classification of the subject group by the area of the peripapillary atrophy in relation to the optic disc scan circle of Cirrus OCT. (A) Case with a peripapillary atrophy area, which is distributed beyond the circle (group A). (B) Case with a peripapillary atrophy area, which is confined within the circle (group B).
jkos-54-1844f1.tif
Figure 2.
Receiver operating characteristic (ROC) curves for average circumpapillary retinal nerve fiber layer (cpRNFL), total macula (TM), ganglion cell-inner plexiform layer (GCIPL) thickness in group with a peripapillary atrophy area distributed beyond the circle (A) and group with a peripapillary atrophy area confined within the circle (B). (A) AUC values: 0.742 in cpRNFL, 0.728 in TM, 0.865 in GCIPL. The differences between cpRNFL and GCIPL (p = 0.042, DeLong method), TM and GCIPL (p = 0.009) were statistically significant. (B) AUC values: 0.892 in cpRNFL, 0.854 in TM, 0.877 in GCIPL. The differences among three parameters were not statistically significant (p > 0.05, DeLong method).
jkos-54-1844f2.tif
Figure 3.
Receiver operating characteristic (ROC) curves for the parameters which show the largest area under ROC curves (AUC) value from circumpapillary retinal nerve fiber layer (cpRNFL), total macula (TM), ganglion cell-inner plexiform layer (GCIPL) thickness measurement in group with a peripapillary atrophy area distributed beyond the circle (A) and group with a peripapillary atrophy area confined within the circle (B). (A) AUC values: 0.742 in average cpRNFL, 0.773 in temporal outer TM, 0.865 in superotemporal GCIPL. The difference between superotemporal GCIPL and average cpRNFL was statistically significant (p = 0.046, DeLong method). The differences between average cpRNFL and temporal outer TM, superotemporal GCIPL and temporal outer TM were not statistically significant (p > 0.05). (B) AUC values: 0.892 in average cpRNFL, 0.862 in temporal inner TM, 0.897 in superotemporal GCIPL. The differences among three parameters were not statistically significant (p > 0.05, DeLong method).
jkos-54-1844f3.tif
Figure 4.
Receiver operating characteristic (ROC) curves for the parameters which show the largest area under ROC curves (AUC) value from circumpapillary retinal nerve fiber layer (cpRNFL), total macula (TM), ganglion cell-in-ner plexiform layer (GCIPL) thickness measurement in spherical equivalent matched subgroup with a peripapillary atrophy area distributed beyond the circle (Sub-A) and subgroup with a peripapillary atrophy area confined within the circle (Sub-B). Sub-A: AUC values: 0.755 in temporal cpRNFL, 0.827 in temporal outer TM, 0.968 in superotemporal GCIPL. The differences between TM and GCIPL (p = 0.010, DeLong method), cpRNFL and GCIPL (p = 0.001) were statistically significant. Sub-B: AUC values: 0.965 in average cpRNFL, 0.967 in temporal outer TM, 0.985 in superotemporal GCIPL. The differences among three parameters were not statistically significant (p > 0.05, DeLong method).
jkos-54-1844f4.tif
Table 1.
Comparison of characteristics in group with a peripapillary atrophy distributed beyond the optical coherence tomography scan circle (PPA beyond circle, Group A) and in group with a peripapillary atrophy confined within the scan circle (PPA within circle, Group B)
  Group A (PPA beyond circle)
Group B (PPA within circle)
p*
  Glaucoma No glaucoma p Glaucoma No glaucoma p
Number of eyes 16 13   34 29    
Type of glaucoma (%)              
  NTG 12 (75.0)     23 (67.6)      
  POAG 4 (25.0)     11 (32.4)      
Age (years) 41.1 ± 11.5 38.9 ± 16.3 0.468 40.1 ± 10.3 36.7 ± 9.3 0.107 0.876
Sex (male : female) 6:5 6:5 1.000 9:11 10:7 0.402 0.157
IOP (mm Hg) 18.4 ± 2.3 16.6 ± 2.6 0.538 18.5 ± 4.3 15.2 ± 2.7 0.070 0.980
SE (diopters) -11.9 ± 4.6 -10.7 ± 3.5 0.948 -7.3 ± 1.8 -7.6 ± 1.5 0.203 0.002
Disc size (mm2) 2.3 ± 0.5 2.1 ± 0.3 0.080 2.1 ± 0.3 2.0 ± 0.3 0.064 0.089
MD (dB) -6.2 ± 3.8 -2.7 ± 2.6 0.007 -4.9 ± 2.9 -2.1 ± 1.9 0.001 0.297
PSD (dB) 4.3 ± 3.0 3.1 ± 2.4 0.193 4.9 ± 3.7 2.9 ± 1.3 0.004 0.776

Values are presented as mean ± SD.

PPA = peripapillary atrophy; NTG = normal tension glaucoma; POAG = primary open angle glaucoma; IOP = intraocular pressure; SE = spherical equivalents; MD = mean deviation; PSD = pattern standard deviation.

* Comparison between PPA beyond circle and PPA within circle in the glaucoma group

Mann-Whitney U test

Chi-square test.

Table 2.
Optical coherence tomography parameters in group with a peripapillary atrophy distributed beyond the scan circle (PPA beyond circle, Group A) and in group with a peripapillary atrophy confined within the scan circle (PPA within circle, Group B)
  Group A (PPA beyond circle)
Group B (PPA within circle)
p*
  Glaucoma No glaucoma p Glaucoma No glaucoma p
Circumpapillary retinal nerve fiber layer thickness (μm)
  Mean 81.7 ± 2.0 89.8 ± 2.2 0.036 74.8 ± 2.1 92.8 ± 1.1 <0.001 0.022
  Superior 93.2 ± 4.5 89.1 ± 5.1 0.980 91.1 ± 3.3 112.9 ± 1.6 <0.001 0.902
  Inferior 90.2 ± 6.4 96.0 ± 4.0 0.212 83.9 ± 4.0 113.4 ± 3.0 <0.001 0.411
  Temporal 84.1 ± 3.7 102.5 ± 5.9 0.041 64.3 ± 2.3 80.5 ± 2.6 <0.001 <0.001
  Nasal 60.9 ± 4.9 70.2 ± 4.8 0.252 59.8 ± 1.7 64.7 ± 1.8 0.054 0.624
Total macular thickness (μm)
  Mean 260.7 ± 3.7 271.7 ± 3.4 0.043 262.1 ± 2.3 279.5 ± 1.3 <0.001 0.835
  Fovea 266.6 ± 4.5 267.6 ± 2.7 0.220 250.0 ± 3.1 265.4 ± 2.3 <0.001 0.033
  Superior (3 mm) 317.3 ± 4.7 320.4 ± 4.0 0.375 312.9 ± 2.8 326.4 ± 2.3 0.001 0.835
  Inferior (3 mm) 307.0 ± 3.6 312.5 ± 5.2 0.488 299.0 ± 3.1 320.5 ± 2.1 <0.001 0.155
  Temporal (3 mm) 302.1 ± 2.9 307.9 ± 2.7 0.105 296.2 ± 2.7 316.0 ± 2.1 <0.001 0.220
  Nasal (3 mm) 316.4 ± 5.0 326.4 ± 3.7 0.076 313.6 ± 3.0 329.5 ± 2.6 <0.001 0.462
  Superior (6 mm) 263.3 ± 2.7 275.1 ± 2.7 0.061 264.4 ± 2.6 275.1 ± 2.0 0.003 0.990
  Inferior (6 mm) 247.3 ± 3.1 253.8 ± 4.0 0.259 242.4 ± 3.2 264.5 ± 1.5 <0.001 0.432
  Temporal (6 mm) 247.1 ± 2.6 256.8 ± 3.7 0.014 248.1 ± 3.4 263.4 ± 3.0 <0.001 0.686
  Nasal (6 mm) 278.8 ± 7.4 271.7 ± 3.4 0.043 278.7 ± 2.9 294.5 ± 3.1 0.001 0.485
Ganglion cell and inner plexiform layer thickness (μm)
  Mean 68.3 ± 2.5 79.0 ± 1.1 0.001 68.8 ± 1.5 79.3 ± 1.0 <0.001 0.873
  Superotemporal 69.8 ± 2.3 82.4 ± 2.8 0.001 69.1 ± 1.5 80.1 ± 1.2 <0.001 0.531
  Superior 71.8 ± 2.1 78.3 ± 2.0 0.054 71.6 ± 1.3 79.5 ± 1.0 <0.001 0.873
  Superonasal 71.9 ± 5.0 81.2 ± 2.5 0.402 72.8 ± 1.6 80.4 ± 1.1 0.001 0.778
  Inferonasal 70.8 ± 4.4 80.6 ± 3.0 0.012 68.5 ± 2.0 79.4 ± 1.0 <0.001 0.980
  Inferior 60.7 ± 4.5 71.2 ± 1.8 0.085 65.9 ± 1.9 75.6 ± 1.2 <0.001 0.523
  Inferotemporal 65.0 ± 3.7 80.3 ± 2.1 0.001 65.7 ± 2.2 80.6 ± 1.4 <0.001 0.980

Values are presented as mean ± SD.

PPA = peripapillary atrophy.

* Comparison between PPA beyond circle and PPA within circle in the glaucoma group.

Table 3.
Area under receiver operator characteristics curve values of the optical coherence tomography parameters in group with a peripapillary atrophy distributed beyond the scan circle (PPA beyond circle, Group A) and in group with a peripapillary atrophy confined within the scan circle (PPA within circle, Group B)
  Group A (PPA beyond circle, n = 16) Group B (PPA within circle, n = 34) p-value*
Circumpapillary retinal nerve fiber layer thickness (CI)
  Mean 0.742 (0.550-0.936) 0.892 (0.796-0.968) 0.040
  Superior 0.494 (0.261-0.727) 0.844 (0.734-0.955) N/A
  Inferior 0.646 (0.430-0.862) 0.872 (0.773-0.971) 0.005
  Temporal 0.740 (0.548-0.930) 0.820 (0.714-0.926) 0.304
  Nasal 0.637 (0.419-0.855) 0.645 (0.506-0.784) 0.933
Total macular thickness (CI)
  Mean 0.728 (0.502-0.913) 0.854 (0.739-0.932) 0.099
  Fovea 0.643 (0.416-0.870) 0.787 (0.668-0.906) 0.101
  Superior (3 mm) 0.601 (0.372-0.829) 0.745 (0.622-0.868) 0.109
  Inferior (3 mm) 0.581 (0.347-0.816) 0.854 (0.759-0.950) 0.001
  Temporal (3 mm) 0.688 (0.474-0.903) 0.862 (0.770-0.954) 0.022
  Nasal (3 mm) 0.701 (0.494-0.908) 0.764 (0.645-0.884) 0.454
  Superior (6 mm) 0.711 (0.506-0.916) 0.721 (0.591-0.851) 0.910
  Inferior (6 mm) 0.633 (0.408-0.858) 0.845 (0.739-0.950) 0.011
  Temporal (6 mm) 0.773 (0.577-0.968) 0.794 (0.672-0.915) 0.734
  Nasal (6 mm) 0.731 (0.525-0.936) 0.744 (0.612-0.875) 0.883
Ganglion cell and inner plexiform layer thickness (CI)
  Mean 0.865 (0.699-1.000) 0.877 (0.779-0.976) 0.857
  Superotemporal 0.865 (0.721-1.000) 0.897 (0.803-0.990) 0.609
  Superior 0.720 (0.519-0.920) 0.818 (0.707-0.928) 0.224
  Superonasal 0.596 (0.363-0.829) 0.759 (0.634-0.885) 0.081
  Inferonasal 0.777 (0.588-0.967) 0.826 (0.719-0.934) 0.529
  Inferior 0.695 (0.495-0.895) 0.775 (0.649-0.901) 0.354
  Inferotemporal 0.854 (0.671-1.000) 0.858 (0.750-0.966) 0.956

PPA = peripapillary atrophy; CI = confidence interval (95%); N/A = not applicable.

* DeLong method comparing difference between group A and B.

Table 4.
Comparison of characteristics in the spherical equivalent matched subgroup A and subgroup B
  Subgroup A* (PPA beyond circle)
Subgroup B (PPA within circle)
p
  Glaucoma No glaucoma p Glaucoma No glaucoma p
Number of eyes 12 12   12 24    
Type of glaucoma (%)              
  NTG 10 (83.3)     8 (66.7)      
  POAG 2 (16.7)     4 (33.3)      
Age (years) 40.4 ± 10.1 43.1 ± 14.5 0.694§ 39.6 ± 6.7 36.7± 9.6 0.186§ 0.918§
Sex (male : female) 3:4 4:4 0.595 3:6 5:9 0.633 0.549
IOP (mm Hg) 18.6 ± 2.5 17.3 ± 2.9 0.331§ 18.5 ± 3.8 16.8 ± 2.6 0.213§ 0.923§
SE (diopters) -9.2 ± 2.0 -9.8 ± 2.3 0.413§ -8.9 ± 1.9 -8.1 ± 1.3 0.137§ 0.799§
Disc size (mm2) 2.3 ± 0.3 2.1 ± 0.3 0.070§ 2.0 ± 0.5 1.9 ± 0.3 0.851§ 0.115§
MD (dB) -6.0 ± 3.8 -2.5 ± 2.4 0.008§ -5.1 ± 3.3 -2.2 ± 2.0 0.012§ 0.657§
PSD (dB) 4.8 ± 3.1 3.0 ± 1.8 0.180§ 5.2 ± 3.2 2.5 ± 1.4 0.039§ 0.717§

Values are presented as mean ± SD.

PPA = peripapillary atrophy; NTG = normal tension glaucoma; POAG = primary open angle glaucoma; IOP = intraocular pressure; SE = spherical equivalents; MD = mean deviation; PSD = pattern standard deviation.

* Patients with a peripapillary atrophy distributed beyond the OCT scan circle (PPA beyond circle)

Patients with a peripapillary atrophy confined within the OCT scan circle (PPA within circle)

Comparison between PPA beyond circle and PPA within circle in the glaucoma group

§ Mann-Whitney U-test

Chi-square test.

Table 5.
Area under receiver operator characteristics curve values of the optical coherence tomography parameters in the spherical equivalent matched subgroup A and subgroup B
  Subgroup A (PPA beyond circle, n = 12) Subgroup B (PPA within circle, n = 12) p-value*
Circumpapillary retinal nerve fiber layer thickness (CI)
  Mean 0.705 (0.573-0.836) 0.965 (0.815-0.997) 0.001
  Superior 0.473 (0.326-0.619) 0.936 (0.787-0.992) N/A
  Inferior 0.586 (0.441-0.732) 0.913 (0.819-0.999) 0.001
  Temporal 0.755 (0.633-0.877) 0.778 (0.610-0.946) 0.828
  Nasal 0.573 (0.428-0.718) 0.639 (0.452-0.819) 0.616
Total macular thickness (CI)
  Mean 0.705 (0.575-0.834) 0.867 (0.732-0.899) 0.073
  Fovea 0.695 (0.566-0.825) 0.731 (0.532-0.930) 0.767
  Superior (3 mm) 0.709 (0.577-0.841) 0.741 (0.558-0.924) 0.780
  Inferior (3 mm) 0.618 (0.474-0.762) 0.898 (0.783-1.000) 0.003
  Temporal (3 mm) 0.773 (0.655-0.890) 0.908 (0.801-0.990) 0.083
  Nasal (3 mm) 0.764 (0.646-0.881) 0.783 (0.599-0.967) 0.864
  Superior (6 mm) 0.768 (0.649-0.888) 0.783 (0.611-0.955) 0.888
  Inferior (6 mm) 0.773 (0.649-0.896) 0.929 (0.790-0.993) 0.042
  Temporal (6 mm) 0.827 (0.726-0.928) 0.967 (0.846-1.000) 0.015
  Nasal (6 mm) 0.786 (0.672-0.901) 0.818 (0.665-0.970) 0.743
Ganglion cell and inner plexiform layer thickness (CI)
  Mean 0.832 (0.727-0.937) 0.977 (0.836-1.000) 0.056
  Superotemporal 0.968 (0.929-1.000) 0.985 (0.868-1.000) 0.492
  Superior 0.659 (0.519-0.799) 0.858 (0.704-0.964) 0.054
  Superonasal 0.680 (0.511-0.812) 0.877 (0.723-0.973) 0.062
  Inferonasal 0.768 (0.641-0.896) 0.929 (0.769-0.988) 0.062
  Inferior 0.673 (0.539-0.806) 0.870 (0.739-0.954) 0.055
  Inferotemporal 0.927 (0.836-1.000) 0.983 (0.860-1.000) 0.203

PPA = peripapillary atrophy; CI = confidence interval (95%); N/A = not applicable.

* DeLong method comparing difference between subgroup A and B.

TOOLS
Similar articles