Journal List > J Korean Ophthalmol Soc > v.54(9) > 1009478

Seo, Jin, and Rho: Relationship Between Nocturnal Dip, Carotid Artery Blood Flow, Brain Ischemic Change in Open Angle Glaucoma

Abstract

Purpose

To investigate the effect of nocturnal dip, carotid artery blood flow, and brain ischemic change on the progression of glaucomatous visual field defect in open-angle glaucoma (OAG) when IOP is less than the target pressure.

Methods

We classified OAG patients (74 patients, 148 eyes) who maintained IOP less than the target pressure as normal tension glaucoma (NTG; 52 patients, 104 eyes) or primary OAG (POAG; 22 patients, 44 eyes). Additionally, we performed 24-hr ambulatory blood pressure monitoring (24-hr ABPM), carotid artery color Doppler U/S (CAD), brain MRI, and visual field (V/F) tests on the patients. Nocturnal dips less than 10% were classified as non-dippers, and dips greater than 10% as dippers. The relationships among nocturnal dip, carotid artery blood flow, brain ischemic change, and progression of glaucomatous V/F defect were examined.

Results

In the case of dippers, glaucomatous V/F defects were aggravated, with a relative risk of approximately 1.74 (NTG) and 2.91 (POAG) times that of non-dippers. In NTG, decreased carotid artery blood flow and brain ischemic change furthered glaucomatous V/F defects, with a relative risk of approximately 2.40 and 2.54 times that of normal carotid artery blood flow and brain MRI findings, respectively. However, in POAG, decreased carotid artery blood flow and brain ische-mic change were not influenced by the progression of glaucomatous V/F defects.

Conclusions

In dippers, decreased carotid artery blood flow and brain ischemic change caused a progression of glaucom-atous V/F defects in NTG and POAG patients. Thus, performing 24-hr ABPM, CAD, and brain MRI should be helpful for glaucoma patients with progression of glaucomatous V/F defects even when the IOP is less than the target pressure. In addition, this analysis provides useful information regarding glaucoma diagnosis and treatment.

References

1. Van Buskirk EM, Cioffi GA. Glaucomatous optic neuropathy. Am J Ophthalmol. 1992; 113:447–52.
crossref
2. Armaly MF. Ocular pressure and visual fields. A ten-year fol-low-up study. Arch Ophthalmol. 1969; 81:25–40.
3. Levens RZ. Low tension glaucoma: a critical review and new material. Surv Ophthalmol. 1980; 24:621–64.
4. Perkins ES. The Bedford glaucoma survey. I. Long-term follow-up of borderline cases. Br J Ophthalmol. 1973; 57:179–85.
crossref
5. Hayreh SS. Progress in the understanding of the vascular etiology of glaucoma. Curr Opin Ophthalmol. 1994; 5:26–35.
crossref
6. Cartwright MJ, Anderson DR. Correlation of asymmetric damage with asymmetric intraocular pressure in normal-tension glaucoma. Arch Ophthalmol. 1988; 106:898–900.
7. Araie M, Sekine M, Suzuki Y, Koseki N. Factors contributing to the progression of visual field damage in eyes with normal tension glaucoma. Ophthalmology. 1994; 101:1440–4.
8. Ishida K, Yamamoto T, Sugiyama K, Kitazawa Y. Disk hemor-rhage is a significantly negative prognostic factor in nor-mal-tension glaucoma. Am J Ophthalmol. 2000; 129:707–14.
crossref
9. Drance S, Anderson DR, Schulzer M. Risk factors for progression of visual field abnormalities in normal tension glaucoma. Am J Ophthalmol. 2001; 131:699–708.
10. Zeimer RC, Wilensky JT, Gieser DK, Viana MA. Association be-tween intraocular pressure peaks and progression of visual fieldloss. Ophthalmology. 1991; 98:64–9.
11. Brubaker RF. Delayed functional loss in glaucoma. LII Edward Jackson Memorial Lecture. Am J Ophthalmol. 1996; 121:473–83.
crossref
12. Hayreh SS. The blood supply of the optic nerve head and the evalu-ation of it: myth and reality. Prog Retin Eye Res. 2001; 20:563–93.
13. Gherghel D, Orgül S, Gugleta K. . Relationship between ocular perfusion pressure and retrobulbar blood flow in patients with glaucoma with progressive damage. Am J Ophthalmol. 2000; 130:597–605.
crossref
14. Sehi M, Flanagan JG, Zeng L. . Relative change in diurnal mean ocular perfusion pressure: a risk factor for the diagnosis of primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2005; 46:561–7.
crossref
15. Hayreh SS. Duke-elder Lecture. Systemic arterial blood pressure and the eye. Eye (Lond). 1996; 10((Pt 1)):5–28.
16. Hayreh SS, Zimmerman MB, Podhajsky P, Alward WL. Nocturnal arterial hypotension and its role in optic nerve head and ocular is-chemic disorders. Am J Ophthalmol. 1994; 117:603–24.
crossref
17. Béchetoille A, Bresson-Dumont H. Diurnal and nocturnal blood pressure drops in patients with focal ischemic glaucoma. Graefes Arch Clin Exp Ophthalmol. 1994; 232:675–9.
18. Seo HR, Ryu WY, Rho SH. Corrlelation between nocturnal dip and progression of glaucoma. J Korean Ophthalmol Soc. 2010; 51:1471–8.
19. Baxter GM, Williamson TH. Color Doppler imaging of the eye: normal ranges, reproducibility, and observer variation. J Ultrasound Med. 1995; 14:91–6.
crossref
20. Niwa Y, Yamamoto T, Kawakami H. . Reproducibility of color Doppler imaging for orbital arteries in Japanese patients with nor-mal-tension glaucoma. Jpn J Ophthalmol. 1998; 42:389–92.
crossref
21. Birinci H, Danaci M, Oge I, Erkan ND. Ocular blood flow in healthy and primary open-angle glaucomatous eyes. Ophthalmologica. 2002; 216:434–7.
crossref
22. Galassi F, Nuzzaci G, Sodi A. . Color Doppler imaging in eval-uation of optic nerve blood supply in normal and glaucomatous subjects. Int Ophthalmol. 1992; 16:273–6.
crossref
23. Nicolela MT, Walman BE, Buckley AR, Drance SM. Ocular hyper-tension and primary open-angle glaucoma: a comparative study of their retrobulbar blood flow velocity. J Glaucoma. 1996; 5:308–10.
24. Rankin SJ, Walman BE, Buckley AR, Drance SM. Color Doppler imaging and spectral analysis of the optic nerve vasculature in glaucoma. Am J Ophthalmol. 1995; 119:685–93.
crossref
25. Schumann J, Orgül S, Gugleta K. . Interocular difference in progression of glaucoma correlates with interocular differences in retrobulbar circulation. Am J Ophthalmol. 2000; 129:728–33.
crossref
26. Arsava EM. The role of MRI as a prognostic tool in ischemic stroke. J Neurochem. 2012; 123(Suppl 2):22–8.
crossref
27. Taha MM, Maeda M, Sakaida H. . Cerebral ischemic lesions detected with diffusion-weighted magnetic resonance imaging af-ter carotid artery stenting: Comparison of several anti-embolic pro-tection devices. Neurol Med Chir (Tokyo). 2009; 49:386–93.
crossref
28. Kim SJ, Roh HG, Jeon P. . Cerebral ischemia detected with dif-fusion-weighted MR imaging after protected carotid artery stenting: comparison of distal balloon and filter device. Korean J Radiol. 2007; 8:276–85.
crossref
29. Roher AE, Debbins JP. . Cerebral blood flow in Alzheimer's disease. Vasc Health Risk Manag. 2012; 8:599–611.
30. Ong K, Farinelli A, Billson F. . Comparative study of brain magnetic resonance imaging findings in patients with low-tension glaucoma and control subjects. Ophthalmology. 1995; 102:1632–8.
crossref
31. Leung DY, Tham CC, Li FC. . Silent cerebral infarct and visual field progression in newly diagnosed normal-tension glaucoma: a cohort study. Ophthalmology. 2009; 116:1250–6.
32. Collaborative Normal-Tension Glaucoma Study Group. The effectiveness of intraocular pressure reduction in the treatment of nor-mal-tension glaucoma. Am J Ophthalmol. 1998; 126:498–505.
33. Advanced Glaucoma Intervention Study. 2. Visual field test scoring and reliability. Ophthalmology. 1994; 101:1445–55.
34. Kim J, Dally LG, Ederer F. . The Advanced Glaucoma Intervention Study (AGIS): 14. Distinguishing progression of glaucoma from visu-al field fluctuations. Ophthalmology. 2004; 111:2109–16.
35. Plange N, Kaup M, Daneljan L. . 24-h blood pressure monitoring in normal tension glaucoma: night-time blood pressure variability. J Hum Hypertens. 2006; 20:137–42.
crossref
36. Graham SL, Drance SM, Wijsman K. . Ambulatory blood pres-sure monitoring in glaucoma. The nocturnal dip. Ophthalmology. 1995; 102:61–9.
37. Hirotsu C, Ohta E, Hirose N, Shimizu K. Profile analysis of 24-hours measurements of blood pressure. Biometrics. 2003; 59:907–15.
crossref
38. Choi J, Jeong J, Cho H, Kook MS. Effect of nocturnal blood pres-sure reduction on circadian fluctuation of mean ocular perfusion pressure: a risk factor for normal tension glaucoma. Invest Ophthalmol Vis Sci. 2006; 47:831–6.
crossref
39. Collignon N, Dewe W, Guillaume S, Collignon-Brach J. Ambulatory blood pressure monitoring in glaucoma patients. The nocturnal systolic dip and its relationship with disease progression. Int Ophthalmol. 1998; 22:19–25.
40. Harris A, Rechtman E, Siesky B. . The role of optic nerve blood flow in the pathogenesis of glaucoma. Ophthalmol Clin North Am. 2005; 18:345–53, v.
crossref
41. Akarsu C, Bilgili MY. Color Doppler imaging in ocular hyper-tension and open-angle glaucoma. Grafes Arch Clin Exp Ophthalmol. 2004; 242:125–9.
crossref
42. Galassi F, Giambene B, Menchini U. Ocular perfusion pressure and retrobulbar haemodynamics in pseudoexfoliation glaucoma. Grafes Arch Clin Exp Ophthalmol. 2008; 246:411–6.

Figure 1.
Abnormal findings of CAD. (A) Increased intima-media thickness in left common carotid artery (white arrow). (B) Multiple atheromas in left internal carotid artery (white arrows).
jkos-54-1386f1.tif
Figure 2.
Abnormal findings of brain MRI. (A) Chronic ischemic change deep white matter, basal ganglia. (B) Brain atrophy. widening of the sulci, thinning of the corpus callosum, enlargement of the lateral ventricles.
jkos-54-1386f2.tif
Table 1.
Demographics of patients in NTG and POAG
NTG POAG p-value
M:F (n) 23:29 10:12 0.571*
Mean age (years) 50.4 ± 10.87 53.6 ± 12.82 0.546
Mean IOP (mm Hg) 11.78 ± 1.97 16.35 ± 2.52 0.278
Mean deviation of visual field (dB) -9.7 ± 5.9 -6.8 ± 5.2 0.194
Pattern standard deviation of visual field (dB) -9.8 ± 4.3 -7.2 ± 4.3 0.214
Mean nocturnal dip of SBP (%) 7.26 ± 4.32 7.42 ± 5.16 0.328
Mean nocturnal dip of DBP (%) 8.68 ± 5.73 9.12 ± 6.14 0.274
Abnormal brain MRI (n) 16 11 0.348*
Abnormal CAD (n) 18 12 0.317*

Values are presented as mean ± SD.

NTG = normal tension glaucoma; POAG = primary open angle glaucoma; SBP = systolic blood pressure; DBP = diastolic blood pressur IOP = intraocular pressure; CAD = carotid artery color Doppler U/S.

* Pearson chi-square test;

Student t-test.

Table 2.
Association of Nocturnal dip and V/F progression in OAG & NTG & POAG
V/F progression
Chi-square test
Yes No p-value* Odd ratio Relative risk
OAG 0.000
Dipper 38 22 3.701 1.990
Non-dipper 28 60 (CI: 1.855-7.384) (CI: 1.387-2.857)
NTG 0.007
Dipper 28 16 3.023 1.736
Non-dipper 22 38 (CI: 1.347-6.782) (CI: 1.163-2.591)
POAG 0.006
Dipper 10 6 6.111 2.917
Non-dipper 6 22 (CI: 1.574-23.719) (CI: 1.305-6.520)

V/F = visual field; OAG = open angle glaucoma; NTG = normal tension glaucoma; POAG = primary open angle glaucoma.

* Statistical significance: p<0.05;

Confidence interval, CI was calculated at 95 percentile.

Table 3.
Association of CAD findings and Nocturnal dip in NTG & POAG
Abnormal CAD findings Normal CAD findings p-value*
The mean of nocturnal dip of SBP (%) 13.77 ± 4.73 14.19 ± 4.40 0.582
The mean of nocturnal dip of DBP (%) 16.16 ± 4.74 14.56 ± 4.21 0.224

Values are presented as mean ± SD.

NTG = normal tension glaucoma; POAG = primary open angle glaucoma; SBP = systolic blood pressure; DBP = diastolic blood pressure; CAD = carotid artery color Doppler U/S.

* Student t-test, statistical significance: p < 0.05.

Table 4.
Association of CAD findings and V/F progression in OAG & NTG & POAG
V/F progression
Chi-square test
Yes No p-value Odd ratio Relative risk
OAG 0.000*
Abnormal CAD 24 16 4.500 2.400
Normal CAD 16 48 (CI: 1.926-10.515) (CI: 1.464-3.933)
NTG 0.001*
Abnormal CAD 18 12 4.750 2.500
Normal CAD 12 38 (CI: 1.788-12.620) (CI: 1.409-4.435)
POAG 0.211
Abnormal CAD 6 4 3.750 2.100
Normal CAD 4 10 (CI: 0.674-20.861) (CI: 0.796-5.543)

V/F = visual field; OAG = open angle glaucoma; NTG = normal tension glaucoma; POAG = primary open angle glaucoma; CAD = Carotid artery color Doppler U/S.

* Statistical significance: p < 0.05;

Confidence interval, CI was calculated at 95 percentile;

Fisher's exact test, statistical significance: p < 0.05.

Table 5.
Association of brain MRI findings and Nocturnal dip in NTG & POAG
Abnormal brain MRI findings Normal brain MRI findings p-value*
The mean of nocturnal dip of SBP (%) 14.50 ± 4.68 13.90 ± 4.36 0.627
The mean of nocturnal dip of DBP (%) 15.42 ± 4.49 15.48 ± 4.56 0.841
Values are presented as mean ± SD.

NTG = normal tension glaucoma; POAG = primary open angle glaucoma; SBP = systolic blood pressure; DBP = diastolic blood pressure.

* Student t-test, statistical significance: p < 0.05.

Table 6.
Association of brain MRI findings and V/F progression in OAG & NTG & POAG
V/F progression
Chi-square test
Yes No p-value Odd ratio Relative risk
OAG 0.000*
Abnormal brain MRI 26 20 4.044 2.324
Normal brain MRI 18 56 (CI: 1.838-8.899) (CI: 1.445-3.737)
NTG 0.001*
Abnormal brain MRI 16 10 5.029 2.549
Normal brain MRI 14 44 (CI: 1.863-13.573) (CI: 1.474-4.411)
POAG 0.176
Abnormal brain MRI 10 10 3.000 2.000
Normal brain MRI 4 12 (CI: 0.717-12.553) (CI: 0.769-5.198)

V/F = visual field; OAG = open angle glaucoma; NTG = normal tension glaucoma; POAG = primary open angle glaucoma.

* Statistical significance: p < 0.05;

Confidence interval, CI was calculated at 95 percentile;

Fisher's exact test, statistical significance: p < 0.05.

TOOLS
Similar articles