Journal List > J Korean Ophthalmol Soc > v.52(6) > 1009056

Moon, Kim, Lee, Kim, Kim, and Tchah: Long-term Clinical Outcomes of Femtosecond LASER-Assisted Descemet's Stripping Endothelial Keratoplasty

Abstract

Purpose

To evaluate the long-term clinical outcomes of femtosecond LASER-assisted Descemet's stripping endothelial keratoplasty (DSEK).

Methods

The clinical results of endothelial keratopathy from 11 consecutive patients who were followed up for at least 12 months after femtosecond LASER-assisted DSEK were retrospectively analyzed. The best corrected visual acuities (BCVA), manifest refractions, intraocular pressures, and perioperative complications were evaluated preoperatively and up to 24 months after the femtosecond LASER-assisted DSEK.

Results

The average follow-up period was 18 months. Postoperative visual acuity had significantly improved from 1.26 (logMAR) to 0.80 (logMAR) at 3 months (p < 0.05) and this change was maintained during postoperative follow-up. All eyes underwent successful transplantation and the donor discs were well-attached. The mean endothelial cell density continued to decrease during the follow-up period. The donor-recipient stromal interface was the area where varying degree of haziness and birefringent particles were found.

Conclusions

The femtosecond LASER-assisted DSEK was effective in creating an endothelial donor disc which resulted in rapid visual recovery and low surgically-induced astigmatism. However, the operation caused rapid decrease in endothelial cell density which requires continuing further consideration by the physician.

References

1. Price FW Jr, Price MO. Descemet's stripping with endothelial keratoplasty in 200 eyes: Early challenges and techniques to enhance donor adherence. J Cataract Refract Surg. 2006; 32:411–8.
2. Terry MA, Ousley PJ. Replacing the endothelium without corneal surface incisions or sutures: the first United States clinical series using the deep lamellar endothelial keratoplasty procedure. Ophthalmology. 2003; 110:755–64.
3. Terry MA, Ousley PJ. Deep lamellar endothelial keratoplasty visual acuity, astigmatism, and endothelial survival in a large prospective series. Ophthalmology. 2005; 112:1541–8.
4. Melles GR, Wijdh RH, Nieuwendaal CP. A technique to excise the descemet membrane from a recipient cornea (descemetorhexis). Cornea. 2004; 23:286–8.
crossref
5. Cheng YY, Pels E, Nuijts RM. Femtosecond-laser-assisted Descemet's stripping endothelial keratoplasty. J Cataract Refract Surg. 2007; 33:152–5.
crossref
6. Espana EM, Huang B. Confocal microscopy study of donor-recipient interface after Descemet's stripping with endothelial keratoplasty. Br J Ophthalmol. 2010; 94:903–8.
crossref
7. Price FW Jr, Price MO. Descemet's stripping with endothelial keratoplasty in 50 eyes: a refractive neutral corneal transplant. J Refract Surg. 2005; 21:339–45.
crossref
8. Seo WM, Kim HK. Early result of femtosecond laser assisted descemet's membrane stripping endothelial keratoplasty. J Korean Ophthalmol Soc. 2008; 49:40–7.
crossref
9. Durrie DS, Kezirian GM. Femtosecond laser versus mechanical keratome flaps in wavefront-guided laser in situ keratomileusis: prospective contralateral eye study. J Cataract Refract Surg. 2005; 31:120–6.
10. Cheng YY, Schouten JS, Tahzib NG, et al. Efficacy and safety of femtosecond laser-assisted corneal endothelial keratoplasty: a randomized multicenter clinical trial. Transplantation. 2009; 88:1294–302.
crossref
11. Cheng YY, Pels E, Cleutjens JP, et al. Corneal endothelial viability after femtosecond laser preparation of posterior lamellar discs for Descemet-stripping endothelial keratoplasty. Cornea. 2007; 26:1118–22.
crossref
12. Cheng YY, Kang SJ, Grossniklaus HE, et al. Histologic evaluation of human posterior lamellar discs for femtosecond laser Descemet's stripping endothelial keratoplasty. Cornea. 2009; 28:73–9.
crossref
13. Cheng YY, Hendrikse F, Pels E, et al. Preliminary results of femtosecond laser-assisted descemet stripping endothelial keratoplasty. Arch Ophthalmol. 2008; 126:1351–6.
crossref
14. Seitz B, Langenbucher A, Hofmann-Rummelt C, et al. Nonmechanical posterior lamellar keratoplasty using the femtosecond laser (femto- plak) for corneal endothelial decompensation. Am J Ophthalmol. 2003; 136:769–72.
15. Lee DH, Chung TY, Chung ES, et al. Case report: Femtosecond laser-assisted small incision deep lamellar endothelial keratoplasty. Korean J Ophthalmol. 2008; 22:43–8.
crossref
16. Sarayba MA, Juhasz T, Chuck RS, et al. Femtosecond laser posterior lamellar keratoplasty: a laboratory model. Cornea. 2005; 24:328–33.
17. Mehta JS, Shilbayeh R, Por YM, et al. Femtosecond laser creation of donor cornea buttons for Descemet-stripping endothelial keratoplasty. J Cataract Refract Surg. 2008; 34:1970–5.
crossref
18. Lee JS, Park YG, Yoon KC. Long-term results of Descemet's stripping automated endothelial keratoplasty in Korea. J Korean Ophthalmol Soc. 2010; 51:1431–7.
crossref
19. Pineros O, Cohen EJ, Rapuano CJ, Laibson PR. Long-term results after penetrating keratoplasty for Fuchs' endothelial dystrophy. Arch Ophthalmol. 1996; 114:15–8.
crossref
20. Kim KE, Joo CK. Changes in astigmatism after suture removal in penetrating keratoplasty. J Korean Ophthalmol Soc. 2003; 44:284–8.
21. Ousley PJ, Terry MA. Stability of vision, topography, and endothelial cell density from 1 year to 2 years after deep lamellar endothelial keratoplasty surgery. Ophthalmology. 2005; 112:50–7.
crossref
22. Fogla R, Padmanabhan P. Initial results of small incision deep lamellar endothelial keratoplasty (DLEK). Am J Ophthalmol. 2006; 141:346–51.
crossref
23. Yepes N, Segev F, Hyams M, et al. Five-millimeter-incision deep lamellar endothelial keratoplasty: one-year results. Cornea. 2007; 26:530–3.
24. Patel SV, Hodge DO, Bourne WM. Corneal endothelium and postoperative outcomes 15 years after penetrating keratoplasty. Am J Ophthalmol. 2005; 139:311–9.
crossref
25. Ing JJ, Ing HH, Nelson LR, et al. Ten-year postoperative results of penetrating keratoplasty. Ophthalmology. 1998; 105:1855–65.
crossref
26. Bahar I, Kaiserman I, McAllum P, et al. Comparison of posterior lamellar keratoplasty techniques to penetrating keratoplasty. Ophthalmology. 2008; 115:1525–33.
crossref
27. Mearza AA, Qureshi MA, Rostron CK. Experience and 12-month results of descemet-stripping endothelial keratoplasty (DSEK) with a small-incision technique. Cornea. 2007; 26:1292–3.
crossref
28. Koenig SB, Covert DJ, Dupps WJ Jr, Meisler DM. Visual acuity, refractive error, and endothelial cell density six months after Descemet stripping and automated endothelial keratoplasty (DSAEK). Cornea. 2007; 26:670–4.
crossref
29. Terry MA, Chen ES, Shamie N, et al. Endothelial cell loss after Descemet's stripping endothelial keratoplasty in a large prospective series. Ophthalmology. 2008; 115:488–96.
crossref
30. Price MO, Price FW Jr. Endothelial cell loss after descemet stripping with endothelial keratoplasty influencing factors and 2-year trend. Ophthalmology. 2008; 115:857–65.
31. Flanagan GW, Binder PS. Precision of flap measurements for laser in situ keratomileusis in 4428 eyes. J Refract Surg. 2003; 19:113–23.
crossref
32. Thomas J, Wang J, Rollins AM, Sturm J. Comparison of corneal thickness measured with optical coherence tomography, ultrasonic pachymetry, and a scanning slit method. J Refract Surg. 2006; 22:671–8.
crossref
33. Thompson RW Jr, Choi DM, Price MO, et al. Noncontact optical coherence tomography for measurement of corneal flap and residual stromal bed thickness after laser in situ keratomileusis. J Refract Surg. 2003; 19:507–15.
crossref
34. Eisner RA, Binder PS. Technique for measuring laser in situ keratomileusis flap thickness using the IntraLase laser. J Cataract Refract Surg. 2006; 32:556–8.
crossref
35. Koenig SB, Covert DJ. Early results of small-incision Descemet's stripping and automated endothelial keratoplasty. Ophthalmology. 2007; 114:221–6.
crossref
36. Covert DJ, Koenig SB. New triple procedure: Descemet's stripping and automated endothelial keratoplasty combined with phacoe-mulsification and intraocular lens implantation. Ophthalmology. 2007; 114:1272–7.
crossref
37. Sonigo B, Iordanidou V, Chong-Sit D, et al. In vivo corneal confocal microscopy comparison of intralase femtosecond laser and mechanical microkeratome for laser in situ keratomileusis. Invest Ophthalmol Vis Sci. 2006; 47:2803–11.
crossref
38. Carlson EC, Wang IJ, Liu CY, et al. Altered KSPG expression by keratocytes following corneal injury. Mol Vis. 2003; 9:615–23.
39. Sundarraj N, Fite D, Belak R, et al. Proteoglycan distribution during healing of corneal stromal wounds in chick. Exp Eye Res. 1998; 67:433–42.
crossref
40. Toti P, Tosi GM, Traversi C, et al. CD-34 stromal expression pattern in normal and altered human corneas. Ophthalmology. 2002; 109:1167–71.
crossref
41. Espana EM, Kawakita T, Liu CY, Tseng SC. CD-34 expression by cultured human keratocytes is downregulated during myofibroblast differentiation induced by TGF-beta1. Invest Ophthalmol Vis Sci. 2004; 45:2985–91.
42. Ljubimov AV, Burgeson RE, Butkowski RJ, et al. Extracellular matrix alterations in human corneas with bullous keratopathy. Invest Ophthalmol Vis Sci. 1996; 37:997–1007.
43. Funderburgh JL, Hevelone ND, Roth MR, et al. Decorin and biglycan of normal and pathologic human corneas. Invest Ophthalmol Vis Sci. 1998; 39:1957–64.
44. Ivarsen A, Thøgersen J, Keiding SR, et al. Plastic particles at the LASIK interface. Ophthalmology. 2004; 111:18–23.
crossref

Figure 1.
The mean pre-operative and postoperative best corrected visual acuity (BCVA) expressed as the logarithm of the minimum angle of resolution (logMAR) (A). The mean values of pre-operative and postoperative intraocular pressure measured by Tonopen (B). (* p<0.05).
jkos-52-679f1.tif
Figure 2.
The recipient's corneal thickness and the donor disc at the vertex.
jkos-52-679f2.tif
Figure 3.
Slit lamp photograph after air injection into the anterior chamber of patient 6 showing corneal edema and previous stromal puncture sites (A). The high resolution anterior segment optical coherence tomography showed that interface space still remained in this patient (B). Slit lamp photograph of patient 7 showing the white interface opacity between the recipient's cornea and the donor disc (C). The anterior segment OCT of the same patient showed the thickness at the vertex and at 2.0 mm and 3.5 mm on each side of the vertex (D). The high resolution anterior segment optical coherence tomography of patient 5 showed thickened posterior corneal disc center which was suspected to be caused by the donor disc being cut unevenly at the time of operation (E).
jkos-52-679f3.tif
Figure 4.
The post-operative endothelial cell density (cells/ mm2). * p < 0.05 in ANOVA.
jkos-52-679f4.tif
Figure 5.
The grading of donor-recipient stromal interface haziness: Grade 1 (very mild haze) (A), Grade 2 (mild haze) (B), Grade 3 (moderate haze) (C), and Grade 4 (severe haze) (D).
jkos-52-679f5.tif
Table 1.
The preoperative patient data, femtosecond LASER settings and follow-up periods
Patient t Sex Age (yr) Diagnosis Operation Femtosecond laser setting (Full lamellar cut) F/U (mon)
Depth (μ m) Diameter (mm) Energy (μ J)
1 M 78 PBK* FS-DSEK 360 8.7 2.0 24
2 M 69 Fuchs dystrophy FS-DSEK, CE IOL 380 8.7 1.8 18
3 M 66 PBK FS-DSEK 380 8.7 1.8 24
4 M 49 ABKΠ FS-DSEK secondary IOL 400 8.7 1.8 24
5 M 46 Traumatic bullous keratopathy FS-DSEK 390 8.7 1.8 18
6 M 59 PBK FS-DSEK 360 8.7 1.8 24
7 F 27 Fuchs dystrophy FS-DSEK 380 8.7 2.0 12
8 M 78 PBK FS-DSEK 380 8.7 1.8 18
9 M 68 PBK FS-DSEK 380 8.75 1.8 12
10 F 35 Fuchs dystrophy FS-DSEK 360 8.75 1.8 12
11 M 66 ACIOL§ PBK FS-DSEK IOL exchange 380 8.7 2.0 12
Mean   58.27     377.3 8.7 1.85 18.00

* PBK = pseudophakic bullous keratopathy

FS-DSEK = femtosecond laser-assisted descemet's stripping endothelial keratoplasty

CE IOL = cataract extraction with intraocular lens implantation

Π ABK = aphakic bullous keratopathy

§ ACIOL = anterior chamber intraocular lens.

Table 2.
Patient's preoperative and postoperative clinical data
Patient Preoperative exam
3 months
6 months
12 months
BCVA*(logMAR) IOP(mm Hg) Astig(D§) BCVA (logMAR) IOP (mm Hg) Astig (D) BCVA (logMAR) IOP(mm Hg) Astig (D) BCVA (logMAR) IOP (mm Hg) Astig (D)
1 1.52 15 2.75 0.52 14 2.25 0.70 11 NA 0.80 11 3.12
2 1.00 16 4.5 0.70 18 NA 0.70 12 NA 0.80 14 1.75
3 2.20 16 1.75 0.52 12 0.5 0.49 13 NA 0.52 34 1
4 0.80 21 1.5 1.00 20 0 1.15 19 NA 1.30 20.5 NA
5 2.30 19 2.5 0.49 17 2.5 NA NA NA NA NA NA
6 2.20 17 2.6 0.90 18 0 1.00 17 2 0.70 19 1.37
7 0.70 18 1 0.10 12 1 0.70 13 NA 0.52 11 0.25
8 0.52 18 NA 1.52 15 NA 1.00 20 0.5 0.90 22 1.75
9 1.00 11 NA 0.80 17.5 NA 0.70 20 0.75 0.70 22 NA
10 1.52 17 1 0.80 19 NA 0.49 17 1.5 NA NA NA
11 1.52 16 NA 1.52 40 2 1.52 22 NA 1.52 20 NA

* BCVA = best corrected visual acuity

IOP = intraocular pressure

Astig = astigmatism

§ D = diopters.

Table 3.
Postoperative complications and management for each case
Case Complication Time Management
2 Graft dehiscence POD2 Air injection & reposition
  Rejection PO12 mon SC* dexamethasone injection
  Rejection PO18 mon SC dexamethasone injection
3 IIOP PO2 wk IOP lowering agents
  Interface opacity PO2 wk Frequent topical steroids
  Rejection PO5.5 mon SC dexamethasone injection
4 Uneven donor corneal thickness PO1 mon Observation
  IIOP PO1 mon A/C tapping, IOP lowering agents
  Rejection PO2 mon SC dexamethasone inj, IV§ methylprednisolone
5 IIOP POD1 IOP lowering agents
  Graft dehiscence POD3 Air injection
6 IIOP PO1 mon IOP lowering agents
  Corectopia PO24 mon Observation
7 Interface opacity PO3 wk Frequent topical steroids
8 Interface opacity PO2 wk Observation
  IIOP PO2 wk IOP lowering agents
  Diffuse interface opacity PO9 mon Frequent topical steroids
9 IIOP PO2 mon IOP lowering agents
10 Anterior uveitis PO1 mon A/C irrigation
  Graft dehiscence PO1 mon Air injection
  Interface opacity PO3 mon Frequent topical steroids
11 Graft dehiscence PO1 wk Air injection

* SC = subconjunctival

IIOP = increased intraocular pressure

A/C = anterior chamber

§ IV = intravenous.

Table 4.
The thickness of donor disc measured at vertex and 2 mm/3.5 mm at nasal and temporal side
Patient The thickness of donor disc (μ m)
Exam period (mon)
Vertex Temporal 2 mm Nasal 2 mm Temporal 3.5 mm Nasal 3.5 mm
1 147 142 211 156 150 5
2 168 135 151 153 121 4
3 130 124 219 185 265 6
4 417 286 239 208 200 6
5 147 143 285 177 418 4
6 163 200 227 189 260 3
7 245 180 299 268 289 3
8 147 202 155 354 183 3
9 246 214 277 310 356 4
10 147 177 179 242 242 3
11 246 249 244 285 285 6
Table 5.
The grading of donor-recipient stromal interface haze, other interface findings, and best-corrected visual acuity in all patients
Patient PostDSEK (mon) Donor-recipient stromal interface Other findings BCVA* (logMAR)
1 3 3 Mild birefringent bodies 0.52
  12 4 Mild birefringent bodies 0.80
2 1 2 Mild birefringent bodies 0.70
  8 1 Mild birefringent bodies 0.80
3 2 4 Severe birefringent bodies 0.90
  9 2 Mild birefringent bodies 0.52
4 6 1 No birefringent bodies 1.15
  12 1 Mild birefringent bodies 1.30
5 2 3 Mild birefringent bodies 1.30
  20 3 Mild birefringent bodies 1.30
6 1 2 Mild birefringent bodies 1.52
  18 2 Moderate birefringent bodies 0.90
7 3 2 Mild birefringent bodies 0.10
  18 2 Mild birefringent bodies 0.30
8 3 4 Severe birefringent bodies 1.52
  9 3 Moderate birefringent bodies 1.00
9 1 4 Severe birefringent bodies 1.00
  3 2 Moderate birefringent bodies 0.80
10 1 3 Mild birefringent bodies 1.52
  2 3 Moderate birefringent bodies 1.0
11 1 3 Moderate birefringent bodies 1.30
  3 1 Mild birefringent bodies 1.52

* BCVA= best corrected visual acuity

logMAR = logarithm of the minimum angle of resolution.

TOOLS
Similar articles