Abstract
Purpose
To study theeffect of micro incision (1.8 mm) and small incision (2.2 mm and 2.8 mm) coaxial phacoemulsification on surgically induced astigmatism (SIA) and high-order aberrations (HOA) of anterior and posterior corneal surface.
Methods
The present randomized clinical study included 32 eyes having a 1.8-mm, 38 eyes having a 2.2-mm, and 30 eyes having a 2.8-mm corneal incision. SIAs were measured at 1 and 3 months postoperatively. HOAs included coma, trefoil, and spherical aberration. The coma– root mean square (RMS) and trefoil-RMS were evaluated at 1 month after the cataract operation.
Results
Surgically induced astigmatisms were 0.41 ± 0.30 diopter (D) in the 1.8-mm incision group, 0.47 ± 0.21 D in 2.2-mm group and 0.71 ± 0.50 D in the 2.8-mm group. The SIA of the 1.8-mm group was smaller than the other groups (p = 0.002). There was no statistically significant difference in coma, spherical aberration of the corneal anterior surface and trefoil, or spherical aberration of the posterior surface among the 3 groups at 1 month after surgery.
References
1. Shepherd JR. Induced astigmatism in small incision cataract surgery. J Cataract Refract Surg. 1989; 15:85–8.
2. Steinert RF, Brint SF, White SM, Fine IH. Astigmatism after small incision cataract surgery. A prospective, randomized, multicenter comparison of 4- and 6.5-mm incisions. Ophthalmology. 1991; 98:417–23. discussion 423-4.
3. Soscia W, Howard JG, Olson RJ. Microphacoemulsification with WhiteStar. A wound-temperature study. J Cataract Refract Surg. 2002; 28:1044–6.
4. Donnenfeld ED, Olson RJ, Solomon R, et al. Efficacy and wound-temperature gradient of whitestar phacoemulsification through a 1.2 mm incision. J Cataract Refract Surg. 2003; 29:1097–100.
5. Dosso AA, Cottet L, Burgener ND, Di Nardo S. Outcomes of coaxial microincision cataract surgery versus conventional coaxial cataract surgery. J Cataract Refract Surg. 2008; 34:284–8.
6. Kurz S, Krummenauer F, Gabriel P, et al. Biaxial microincision versus coaxial small-incision clear cornea cataract surgery. Ophthalmology. 2006; 113:1818–26.
7. Elkady B, Alió JL, Ortiz D, Montalbán R. Corneal aberrations after microincision cataract surgery. J Cataract Refract Surg. 2008; 34:40–5.
8. Denoyer A, Denoyer L, Marotte D, et al. Intraindividual comparative study of corneal and ocular wavefront aberrations after biaxial microincision versus coaxial small-incision cataract surgery. Br J Ophthalmol. 2008; 92:1679–84.
9. Lee AG, Greenlee E, Oetting TA, et al. Assessing cataract surgical competency. Ophthalmology. 2007; 114:1415–6.
10. Osher RH. Microcoaxial phacoemulsification Part 2: clinical study. J Cataract Refract Surg. 2007; 33:408–12.
11. Osher RH, Injev VP. Microcoaxial phacoemulsification Part 1: lab-oratory studies. J Cataract Refract Surg. 2007; 33:401–7.
12. Tong N, He JC, Lu F, et al. Changes in corneal wavefront aberrations in microincision and small-incision cataract surgery. J Cataract Refract Surg. 2008; 34:2085–90.
13. Wang J, Tang X, Zhang S, Li LH. Changes in high order aberrations of anterior and posterior surfaces of cornea before and after phacoemulsification. Zhonghua Yan Ke Za Zhi. 2008; 44:1066–71.
14. Lee KM, Kwon HG, Joo CK. Microcoaxial cataract surgery outcomes: comparison of 1.8 mm system and 2.2 mm system. J Cataract Refract Surg. 2009; 35:874–80.
15. Lee SY, Chung JL, Hong JP, et al. Comparative study of two aspheric, aberration-free intraocular lenses in cataract surgery. J Korean Ophthalmol Soc. 2009; 50:1520–6.
16. Hwang SJ, Choi SK, Oh SH, et al. Surgically induced astigmatism and corneal higher order aberrations in microcoaxial and conventional cataract surgery. J Korean Ophthalmol Soc. 2008; 49:1597–602.
17. Holladay JT, Moran JR, Kezirian GM. Analysis of aggregate surgically induced refractive change, prediction error, and intraocular astigmatism. J Cataract Refract Surg. 2001; 27:61–79.
18. Alió J, Rodríguez-Prats JL, Galal A, Ramzy M. Outcomes of microincision cataract surgery versus coaxial phacoemulsification. Ophthalmology. 2005; 112:1997–2003.
19. Linebarger EJ, Hardten DR, Shah GK, Lindstrom RL. Phacoemulsification and modern cataract surgery. Surv Ophthalmol. 1999; 44:123–47.
20. Dick HB, Schwenn O, Krummenauer F, et al. Inflammation after sclerocorneal versus clear corneal tunnel phacoemulsification. Ophthalmology. 2000; 107:241–7.
22. Weikert MP. Update on bimanual microincisional cataract surgery. Curr Opin Ophthalmol. 2006; 17:62–7.
23. Dam-Johansen M, Olsen T. Induced astigmatism after 4 and 6 mm scleral tunnel incision. A randomized study. Acta Ophthalmol Scand. 1997; 75:669–74.
24. Mendívil A. Frequency of induced astigmatism following phacoemulsification with suturing versus without suturing. Ophthalmic Surg Lasers. 1997; 28:377–81.
25. Lyhne N, Krogsager J, Corydon L, Kjeldgaard M. One year fol-low-up of astigmatism after 4.0 mm temporal clear corneal and superior scleral incisions. J Cataract Refract Surg. 2000; 26:83–7.
26. Artal P, Guirao A, Berrio E, Williams DR. Compensation of corneal aberrations by the internal optics in the human eye. J Vis. 2001; 1:1–8.
27. Artal P, Guirao A. Contributions of the cornea and the lens to the aberrations of the human eye. Opt Lett. 1998; 23:1713–5.
28. Mester U, Dillinger P, Anterist N. Impact of a modified optic design on visual function: clinical comparative study. J Cataract Refract Surg. 2003; 29:652–60.
29. Guirao A, Redondo M, Geraghty E, et al. Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted. Arch Ophthalmol. 2002; 120:1143–51.
30. Castejón-Mochón JF, López-Gil N, Benito A, Artal P. Ocular wavefront aberration statistics in a normal young population. Vision Res. 2002; 42:1611–7.
31. Yao K, Tang X, Ye P. Corneal astigmatism, high order aberrations, and optical quality after cataract surgery: microincision versus small incision. J Refract Surg. 2006; 22:S1079–82.
32. Guirao A, Tejedor J, Artal P. Corneal aberrations before and after small-incision cataract surgery. Invest Ophthalmol Vis Sci. 2004; 45:4312–9.
33. Marcos S, Rosales P, Llorente L, Jiménez-Alfaro I. Change in corneal aberrations after cataract surgery with 2 types of aspherical intraocular lenses. J Cataract Refract Surg. 2007; 33:217–26.
34. Yao K, Tang XJ, Huang XD, Ye PP. Clinical evaluation on the bimanual microincision cataract surgery. Zhonghua Yan Ke Za Zhi. 2008; 44:525–8.
Table 1.
Dermographics of patients | ||||
---|---|---|---|---|
Baseline variables | 1.8 mm | 2.2 mm | 2.8 mm | p-value |
No. eyes | 32 | 38 | 30 | |
Age (mean±SD, yr) | 64.5 ± 10.5 | 61.8 ± 15.3 | 69.4 ± 10.0 | 0.045* |
UCVA† (mean±SD, logMAR) | 0.71 ± 0.36 | 0.70 ± 0.33 | 0.53 ± 0.21 | 0.053 |
BCVA‡ (mean±SD, logMAR) | 0.40 ± 0.33 | 0.45 ± 0.37 | 0.41 ± 0.21 | 0.836 |
SE§ (mean±SD, diopter) | -1.71 ± 5.98 | 0.31 ± 1.85 | 0.02 ± 2.09 | 0.119 |
Endothelial cell density (mean±SD, cell/mm2) | 2850 ± 419 | 2618 ± 433 | 2724 ± 345 | 0.063 |
Surgical results after cataract surgery |
|
|
|
|
UCVA (mean±SD, logMAR) | 0.34 ± 0.32 | 0.26 ± 0.30 | 0.15 ± 0.20 | 0.029* |
BCVA (mean±SD, logMAR) | 0.05 ± 0.09 | 0.05 ± 0.90 | 0.06 ± 0.10 | 0.881 |
SE (mean±SD, diopter) | -1.05 ± 1.05 | -0.45 ± 0.78 | -0.32 ± 0.51 | 0.000* |
Endothelial cell density (mean±SD, cell/mm2) | 2516 ± 466 | 2303 ± 381 | 2339 ± 329 | 0.221 |
Table 2.
Astigmatism | 1.8 mm | 2.2 mm | 2.8 mm | p-value | |
---|---|---|---|---|---|
Preop | Astigmatism* (mean±SD, diopter) | 0.72 ± 0.38 | 0.70 ± 0.38 | 0.76 ± 0.53 | 0.846 |
Steep axis | 87 ± 52 | 106 ± 51 | 90 ± 43 | 0.236 | |
1 month | Astigmatism* (mean±SD, diopter) | 0.78 ± 0.53 | 0.59 ± 0.44 | 0.90 ± 0.55 | 0.520 |
Steep axis | 99 ± 49 | 108 ± 37 | 91 ± 40 | 0.249 | |
3 months | Astigmatism* (mean±SD, diopter) | 0.76 ± 0.50 | 0.71 ± 0.48 | 0.97 ± 0.61 | 0.122† |
Steep axis | 90 ± 45 | 109 ± 37 | 111 ± 26 | 0.045† |
Table 3.
Groups |
1.8 mmm (mean±SD) |
2.2 mm (mean±SD) |
2.8 mm (mean±SD) |
||||||
---|---|---|---|---|---|---|---|---|---|
Zernike terms | preop | postop | p-value | preop | postop | p-value | preop | postop | p-value |
Z (3, -3) trefoil | 0.032±0.314 | 0.037±0.219 | 0.852 | -0.079±0.425 | 0.540±0.860 | 0.026‡ | 0.574±0.318 | -0.043±0.259 | 0.165 |
Z (3, -1) coma | -0.207±0.296 | -0.163±0.222 | 0.795 | -0.178±0.247 | -0.213±0.171 | 0.653 | -0.107±0.245 | 0.070±0.294 | 0.828 |
Z (3, 1) coma | 0.039 ± 0.349 | -0.029±0.261 | 0.999 | -0.176±0.394 | 0.131±0.338 | 0.819 | -0.009±0.333 | 0.070±0.294 | 0.217 |
Z (3, 3) trefoil | 0.167 ± 0.365 | -0.009±0.078 | 0.091 | 0.078±0.416 | 0.015±0.311 | 0.598 | 0.044±0.220 | 0.067±0.315 | 0.814 |
Z (4, 0) SA* | 0.704±0.204 | 0.667±0.247 | 0.113 | 0.654±0.212 | 0.652±0.167 | 0.978 | 0.689±0.294 | 0.818±0.264 | 0.098 |
Trefoil RMS† | 0.344±0.373 | 0.412±0.280 | 0.200 | 0.369±0.474 | 0.511±0.779 | 0.336 | 0.296±0.251 | 0.288±0.293 | 0.910 |
Coma RMS† | 0.412±0.280 | 0.316±0.210 | 0.479 | 0.457±0.253 | 0.318±0.238 | 0.113 | 0.362±0.217 | 0.349±0.265 | 0.782 |
Table 4.
Groups |
1.8 mm (mean±SD) |
2.2 mm (mean±SD) |
2.8 mm (mean±SD) |
||||||
---|---|---|---|---|---|---|---|---|---|
Zernike terms | preop | postop | p-value | preop | postop | p-value | preop | postop | p-value |
Z (3, -3) trefoil | 0.013±0.448 | 0.133±0.550 | 0.677 | 0.408±0.832 | 0.592±0.741 | 0.457 | 0.160±0.768 | 0.257±0.687 | 0.523 |
Z (3, -1) coma | -0.166±0.636 | -0.128±1.074 | 0.796 | -0.109±0.535 | -0.558±0.762 | 0.016‡ | -0.056±0.099 | 0.226±1.108 | 0.033‡ |
Z (3, 1) coma | -0.449±0.623 | -0.460±0.621 | 0.884 | -0.287±0.547 | -0.155±0.802 | 0.513 | -0.457±0.621 | -0.353±0.570 | 0.397 |
Z (3, 3) trefoil | 0.510±0.895 | 0.261±0.360 | 0.321 | 0.597±0.908 | 0.307±0.405 | 0.234 | 0.254±0.071 | 0.270±0.520 | 0.920 |
Z (4, 0) SA* | 0.950±0.389 | 1.051±0.345 | 0.076 | 0.796±0.485 | 0.983±0.423 | 0.137 | 0.794±0.497 | 0.971±0.409 | 0.026‡ |
Trefoil RMS† | 0.790±0.772 | 0.514±0.418 | 0.308 | 0.919±1.039 | 0.736±0.357 | 0.598 | 0.824±0.964 | 0.705±0.608 | 0.491 |
Coma RMS† | 0.861±0.491 | 1.01±0.578 | 0.364 | 0.737±0.321 | 0.912±0.596 | 0.710 | 0.160±0.768 | 0.257±0.687 | 0.523 |