Journal List > J Korean Ophthalmol Soc > v.52(12) > 1008954

Kang, Ji, and Park: Analysis of Factors Related of Location of Initial Visual Field Defect in Normal Tension Glaucoma

Abstract

Purpose

To investigate the risk factors related to the location of visual field defects in normal tension glaucoma.

Methods

Eighty-one eyes diagnosed as normal tension glaucoma in patients with early glaucomatous visual field defects were divided into central visual field defects and peripheral visual field defects. The difference between the 2 groups based on the intra-individual comparison were assessed with several ocular risk factors such as sex, age, hypertension, diabetes mellitus, smoking, laterality, intraocular pressure, central corneal thickness, cup-disc ratio, peripapillary atrophy, mean deviation, pattern standard deviation, best corrected visual acuity, and refractive errors.

Results

The incidence of hypertension in the central visual field defects group (60.6%) was higher than in the peripheral visual field defects group (22.9%, p = 0.001). The central corneal thickness in the central group (533.1 ± 18.2 μ m) was thin-ner than in the peripheral group (545.0 ± 30.0 μ m, p = 0.003). Hypertension was the only risk factors for central visual field defects (p = 0.001). In both the central group and peripheral group, upper visual field defects were more common than lower defects.

Conclusions

Hypertension in patients with normal tension glaucoma was a factor involved in central visual field defects. Additionally, numerous visual field defects were mainly found the superior portion.

References

1. Shields MB. Normal-tension glaucoma: is it different from primary openangle glaucoma? Curr Opin Ophthalmol. 2008; 19:85–8.
crossref
2. Crichton A, Drance SM, Douglas GR, Schulzer M. Unequal intraocular pressure and its relation to asymmetric visual field defects in low-tension glaucoma. Ophthalmology. 1989; 96:1312–4.
crossref
3. Araie M, Sekine M, Suzuki Y, Koseki N. Factors contributing to the progression of visual field damage in eyes with normal-tension glaucoma. Ophthalmology. 1994; 101:1440–4.
crossref
4. Meyer JH, Brandi-Dohrn J, Funk J. Twenty four hour blood pressure monitoring in normal tension glaucoma. Br J Ophthalmol. 1996; 80:864–7.
crossref
5. Daugeliene L, Yamamoto T, Kitazawa Y. Risk factors for visual field damage progression in normal-tension glaucoma eyes. Graefes Arch Clin Exp Ophthalmol. 1999; 237:105–8.
crossref
6. Drance S, Anderson DR, Schulzer M. Risk factors for progression of visual field abnormalities in normal-tension glaucoma. Am J Ophthalmol. 2001; 131:699–708.
crossref
7. Nakagami T, Yamazaki Y, Hayamizu F. Prognostic factors for progression of visual field damage in patients with normal-tension glaucoma. Jpn J Ophthalmol. 2006; 50:38–43.
crossref
8. Kiriyama N, Ando A, Fukui C, et al. A comparison of optic disc topographic parameters in patients with primary open angle glaucoma, normal tension glaucoma and ocular hypertension. Graefes Arch Clin Exp Ophthalmol. 2003; 241:541–5.
crossref
9. Caprioli J, Spaeth GL. Comparison of the optic nerve head in high- and low-tension glaucoma. Arch Ophthalmol. 1985; 103:1145–9.
crossref
10. Javitt JC, Spaeth GL, Katz LJ, et al. Acquired pits of the optic nerve. Increased prevalence in patients with low-tension glaucoma. Ophthalmology. 1990; 97:1038–43.
11. Eid TE, Spaeth GL, Moster MR, Augsburger JJ. Quantitative differences between the optic nerve head and peripapillary retina in low-tension and high-tension primary openangle glaucoma. Am J Ophthalmol. 1997; 124:805–13.
crossref
12. Yamazaki Y, Koide C, Miyazawa T, et al. Comparison of retinal nerve-fiber layer in high- and normal-tension glaucoma. Graefes Arch Clin Exp Ophthalmol. 1991; 229:517–20.
crossref
13. Caprioli J, Spaeth GL. Comparison of visual field defects in the low-tension glaucomas with those in the high-tension glaucomas. Am J Ophthalmol. 1984; 97:730–7.
crossref
14. Koseki N, Araie M, Suzuki Y, Yamagami J. Visual field damage proximal to fixation in normal- and high-tension glaucoma eyes. Jpn J Ophthalmol. 1995; 39:274–83.
15. Araie M, Yamagami J, Suziki Y. Visual field defects in normal-tension and high-tension glaucoma. Ophthalmology. 1993; 100:1808–14.
crossref
16. Ahrlich KG, De Moraes CG, Teng CC, et al. Visual field progression fifferences between normal-tension and exfoliative hgh-tension glaucoma. Invest Ophthalmol Vis Sci. 2010; 51:1458–63.
17. Becker B. Diabetes mellitus and primary openangle glaucoma. The XXVII Edward Jackson Memorial Lecture. Am J Ophthalmol. 1971; 71:1–16.
18. Mcleod SD, West SK, Quigley HA, Fozard JL. A longitudinal study of the relationship between intraocular and blood pressures. Invest Ophthalmol Vis Sci. 1990; 31:2361–6.
19. Mitchell P, Lee AJ, Rochtchina E, Wang JJ. Openangle glaucoma and systemic hypertension: the blue mountains eye study. J Glaucoma. 2004; 13:319–26.
20. Pradalier A, Hamard P, Sellem E, Bringer L. Migraine and glaucoma: an epidemiologic survey of French ophthalmologists. Cephalalgia. 1998; 18:74–6.
crossref
21. Broadway DC, Drance SM. Glaucoma and vasospasm. Br J Ophthalmol. 1998; 82:862–70.
crossref
22. Deokule S, Weinreb RN. Relationships among systemic blood pressure, intraocular pressure, and openangle glaucoma. Can J Ophthalmol. 2008; 43:302–7.
crossref
23. Leske MC, Wu SY, Hennis A, et al. BESs Study Group. Risk factors for incident openangle glaucoma: the Barbados Eye Studies. Ophthalmology. 2008; 115:85–93.
24. Sponsel WE, Zetlan SR, Stodtmeister R, Kaufman PL. Retinal ca-pillary hemodynamics and VEP/pressure tolerance: evidence of retinal microcirculatory compromise in treated glaucomatous eyes. Ophthalmologica. 1997; 211:172–7.
crossref
25. Gherghel D, Orgul S, Gugleta K, et al. Relationship between ocular perfusion pressure and retrobulbar blood flow in patients with glaucoma with progressive damage. Am J Ophthalmol. 2000; 130:597–605.
crossref
26. Lin W, Aoyama Y, Kawase K, Yamamoto T. Relationship between central corneal thickness and visual field defect in openangle glaucoma. Jpn J Ophthalmol. 2009; 53:477–81.
crossref
27. Shah H, Kniestedt C, Bostrom A, et al. Role of central corneal thickness on baseline parameters and progression of visual fields in open angle glaucoma. Eur J Ophthalmol. 2007; 17:545–9.
crossref
28. Ritch R, Shields MB, Krupin T. The Glaucomas. 2nd ed. St. Louis: The CV Mosby Co.;1996. p. 769.
29. Kim YN, Kang JH, Kim JS, Lee JH. Correlation between retinal nerve fiber layer thickness and visual field in normal tension glaucoma. J Korean Ophthalmol Soc. 2005; 46:1532–9.
30. Woo SW, Choi HW, Kim JS, Lee JH. Correlation between retinal nerve fiber layer thickness and visual field in normal tension glaucoma patients. J Korean Ophthalmol Soc. 2006; 47:1613–22.
31. El Beltagi TA, Bowd C, Boden C, et al. Retinal nerve fiber layer thickness measured with optical coherence tomography is related to visual function in glaucomatous eyes. Ophthalmology. 2003; 110:2185–91.
crossref

Figure 1.
Visual field probability plot (pattern deviation) divided into 4 subfields: a central 10 degree (radius) and outer arcu-ate subfields in both superior and inferior hemifields (left eye).
jkos-52-1478f1.tif
Figure 2.
Examples of visual field defect evaluation on visual field gray scale and pattern deviation scale (A, B) Central field defects, (C, D) Peripheral field defects. GHT = glaucoma hemifield test.
jkos-52-1478f2.tif
Table 1.
Demographics and characteristics of patients with normal tension glaucoma
  Central scotoma Peripheral scotoma p-value
Number of patients 33 48  
Sex (M/F) 12/21 26/22 0.174
Age (yr) 60.2 ± 10.6 59.0 ± 10.2 0.621
Hypertension 20 11 0.001
Diabetes mellitus 7 11 1.000
Smoking 9 13 1.000
Laterality (Rt/Lt) 22/11 23/25 0.115
Intraocular pressure (mm Hg) 14.5 ± 2.4 14.7 ± 2.8 0.739
Central corneal thickness (μ m) 533.1 ± 18.2 545.0 ± 30.0 0.030
Mean deviation of visual field (dB) ‐3.62 ± 1.96 ‐4.14 ± 2.92 0.343
Pattern standard deviation of visual field (dB) 4.27 ± 2.49 5.10 ± 2.67 0.164
Cup disc ratio 0.72 ± 0.12 0.71 ± 0.11 0.732
β zone area of peripapillary atrophy (mm2) 0.62 ± 0.86 0.56 ± 0.81 0.730
Visual acuity (log MAR) 0.07 ± 0.15 0.06 ± 0.12 0.747
Refractive errors (spherical equivalent, diopter) ‐0.42 ± 1.65 ‐0.35 ± 1.70 0.837

Values are presented as mean ± SD or number.

Fisher's exact test

Student's t-test.

Table 2.
The risk factors for central field defects in normal tension glaucoma
Univariate analysis of factors affecting central field defect
Prognostic factor Odd ratio 95% C.I. p-value
Sex      
 Male 1   0.117
 Female 2.07 (0.83, 5.13)  
Age 1.01 (0.97, 1.06) 0.613
Hypertension      
 Yes 1   0.001
 No 0.19 (0.07, 0.51)  
Diabetes mellitus      
 Yes 1   0.856
 No 1.10 (0.38, 3.22)  
Current smoker      
 Yes 1   0.985
 No 0.99 (0.37, 2.68)  
Laterality      
 Right 1   0.767
 Left 0.77 (0.32, 1.87)  
Intraocular pressure 0.97 (0.82, 1.15) 0.743
Central corneal thickness 0.98 (0.96, 1.00) 0.054
Mean deviation 1.08 (0.91, 1.29) 0.375
Pattern standard deviation 0.87 (0.72, 1.06) 0.169
Cup disc ratio 2.08 (0.04, 2.89) 0.722
β zone area of peripapillary atrophy 1.10 (0.65, 1.88) 0.724
Visual acuity (log MAR) 1.80 (0.06, 50.5) 0.731
Refractive errors (spherical equivalent, diopter) 1.03 (0.72, 1.47) 0.859
Table 3.
Number (percentage) of abnormal points in subfields
  Total number of points in subfields Number (%) of abnormal points
Superior, central 198 (6 × 33) 76 (38.4)
Inferior, central 198 (6 × 33) 50 (25.3)
p-value   0.007
Superior, peripheral 1488 (31 × 48) 251 (16.9)
Inferior, peripheral 1488 (31 × 48) 188 (12.6)
p-value   0.001

Chi-square test.

Table 4.
Number (percentage) of abnormal clusters in subfields
  Total number of clusters in subfields Number (%) of abnormal clusters
Superior, central 66 (2 × 33) 13 (19.7)
Inferior, central 66 (2 × 33) 11 (16.7)
p-value   0.132
Superior, peripheral 480 (10 × 48) 61 (12.7)
Inferior, peripheral 480 (10 × 48) 50 (10.4)
p-value   0.313

Chi-square test.

TOOLS
Similar articles