Journal List > J Korean Ophthalmol Soc > v.52(2) > 1008952

Ahn, Seok, and Park: Considering Spherical Aberration in Choosing the Wavefront Map for Laser Vision Correction

Abstract

Purpose

To report the dynamic nature of human optical aberrations in the scotopic condition.

Methods

A total of 20 eyes who were candidates for laser vision correction were included in the present study. Repeated wavefront data were obtained using WavescanTM (AMO/VISX). From the wavefront analysis data, the sphere, astigmatism, average pupil size, spherical aberration, coma and trefoil were selected and used to investigate any correlation among the parameters.

Results

The sphere, spherical aberration, coma and pupil size showed a dynamic change in the scotopic condition. The spherical aberration and pupil size decreased by the amount of 0.10 ± 0.04 μ m and 0.55 ± 0.37 mm as the sphere changed 1 D in myopic direction. There was significant positive correlation between the sphere and spherical aberration in 13 eyes of 9 patients (65%), between the sphere and pupil size in 5 eyes of 4 patients (25%), and between the sphere and coma in 3 eyes of 3 patients (15%). The spherical aberration decreased significantly in 4 eyes of 4 patients (20%) as the pupil size decreased.

Conclusions

The optical aberration of human eyes showed a dynamic nature in the scotopic condition. In particular, there was significant correlation between the sphere and spherical aberration. The observed correlations have the potential to be used as helpful indicators to select the optimal wavefront data for the laser vision correction.

References

1. Charman WN. Wavefront aberration of the eye: a review. Optom Vis Sci. 1991; 68:574–83.
2. Maeda N. Wavefront technology in ophthalmology. Curr Opin Ophthalmol. 2001; 12:294–9.
crossref
3. Oshika T, Klyce SD, Applegate RA, et al. Comparison of corneal wavefront aberrations after photorefractive keratectomy and laser in situ keratomileusis. Am J Ophthalmol. 1999; 127:1–7.
crossref
4. Awwad ST, Bowman RW, Cavanagh HD, McCulley JP. Wavefront-guided LASIK for myopia using the LADAR CustomCornea and the VISX CustomVue. J Refract Surg. 2007; 23:26–38.
crossref
5. Subbaram MV, MacRae SM. Does dilated wavefront aberration measurement provide better postoperative outcome after custom LASIK? Ophthalmology. 2006; 113:1813–7.
crossref
6. Netto MV, Dupps W Jr, Wilson SE. Wavefront-guided ablation: evidence for efficacy compared to traditional ablation. Am J Ophthalmol. 2006; 141:360–8.
crossref
7. Thibos LN, Applegate RA, Schwiegerling JT, Webb R; VSIA Standards Taskforce Members. Standards for reporting the optical aberrations of eyes. J Refract Surg. 2002; 18:S652–60.
8. Yoon G, Jeong TM, Cox IG, Williams DR. Vision improvement by correcting higher-order aberrations with phase plates in normal eyes. J Refract Surg. 2004; 20:S523–7.
crossref
9. Applegate RA, Sarver EJ, Khemsara V. Are all aberrations equal? J Refract Surg. 2002; 18:S556–62.
crossref
10. Guirao A, Williams DR. A method to predict refractive errors from wave aberration data. Optom Vis Sci. 2003; 80:36–42.
crossref
11. Netto MV, Ambrósio R Jr, Shen TT, Wilson SE. Wavefront analysis in normal refractive surgery candidates. J Refract Surg. 2005; 21:332–8.
crossref
12. Yoon G, Macrae S, Williams DR, Cox IG. Causes of spherical aberration induced by laser refractive surgery. J Cataract Refract Surg. 2005; 31:127–35.
crossref
13. Roberts C. Biomechanics of the cornea and wavefront-guided laser refractive surgery. J Refract Surg. 2002; 18:S589–92.
crossref
14. Kulkamthorn T, Silao JN, Torres LF, et al. Wavefront-guided laser in situ keratomileusis in the treatment of high myopia by using the CustomVue wavefront platform. Cornea. 2008; 27:787–90.
crossref
15. Perez-Straziota CE, Randleman JB, Stulting RD. Visual acuity and higher-order aberrations with wavefront-guided and wavefront- optimized laser in situ keratomileusis. J Cataract Refract Surg. 2010; 36:437–41.
16. Reinstein DZ, Neal DR, Vogelsang H, et al. Optimized and wave-front guided corneal refractive surgery using the Carl Zeiss Meditec platform: the WASCA aberrometer, CRS-Master, and MEL80 excimer laser. Ophthalmol Clin North Am. 2004; 17:191–210.
crossref
17. Venter J. Wavefront-guided custom ablation for myopia using the NIDEK NAVEX laser system. J Refract Surg. 2008; 24:487–93.
crossref
18. Cheng H, Barnett JK, Vilupuru AS, et al. A population study on changes in wave aberrations with accommodation. J Vis. 2004; 4:272–80.
crossref
19. Iida Y, Shimizu K, Ito M, Suzuki M. Influence of age on ocular wavefront aberration changes with accommodation. J Refract Surg. 2008; 24:696–701.
crossref
20. He JC, Burns SA, Marcos S. Monochromatic aberrations in the ac-commodated human eye. Vision Res. 2000; 40:41–8.
crossref
21. Dubbelman M, Van der Heijde GL, Weeber HA. Change in shape of the aging human crystalline lens with accommodation. Vision Res. 2005; 45:117–32.
crossref
22. Dubbelman M, Van der Heijde GL, Weeber HA, Vrensen GF. Changes in the internal structure of the human crystalline lens with age and accommodation. Vision Res. 2003; 43:2363–75.
crossref
23. Ninomiya S, Fujikado T, Kuroda T, et al. Changes of ocular aberration with accommodation. Am J Ophthalmol. 2002; 134:924–6.
crossref
24. Seiler T, Koller T. Asphericity of the cornea and astigmatism. Klin Monbl Augenheilkd. 2005; 222:977–82.
25. Rosen ES, Eustace P, Thompson HS, Cumming WJK. NeuroOphthalmology. London: Mosby;1998. p. 33–4.

Figure 1.
The correlation between the change in sphere (Δ sphere) and the change in spherical aberration (Δ SA), (A), and the correlation between the change in sphere (Δ sphere) and the change of pupil size (Δ pupil), (B), were demonstrated. The spherical aberration decreased on average of 0.10 ± 0.04 μ m (mean ± SD) as the sphere decreased 1 diopter (rho=0.747, p<0.001, Spearman's correlation test). The pupil size decreased on average 0.55 ± 0.37 mm as the sphere decreased 1 diopter (rho=0.526, p=0.017, Spearman's correlation test).
jkos-52-147f1.tif
Figure 2.
The change in spherical aberration according to the change in sphere in study eyes. The scatter plot showed that 13 eyes of 9 patients showed significant correlation between SA and sphere (refer to inserted table for Spearman's rho and p-value). Filled dots mean the values of the left eye and empty dots mean the values of the right eye.
jkos-52-147f2.tif
Figure 3.
The change in pupil size according to the change in sphere in study eyes. The scatter plot showed that 5 eyes of 4 patients showed significant correlation between pupil size and sphere (refer to inserted table for Spearman's rho and p-value). Filled dots mean the values of the left eye and empty dots mean the values of the right eye.
jkos-52-147f3.tif
Figure 4.
The correlation between the SA used for the laser vision correction and the postoperative spherical equivalent was not significant (p=0.510, Spearman's correlation test). However, UCVA showed the positive correlation with SA (p=0.039, rho=0.464, Spearman's correlation test).
jkos-52-147f4.tif
Table 1.
Descriptive data of 20 eyes included in this study
Patient No Sex/Age R/L MR (diopterr) CR (diopter) Data from aberrometer
Pupil size Mean ± SD (Min/Max) Sphere Mean ± SD (Min/Max) Cylinder Mean ± SD (Min/Max) Spherical aberration Mean ± SD (Min/Max) Coma Mean ± SD (Min/Max) Trefoil Mean ± SD (Min/Max)
  R -5.5-0.5 -5.5-0.5 8.33 ± 0.21 -7.47 ± 1.07 -0.68 ± 0.21 -0.31 ± 0.16 0.07 ± 0.05 0.16 ± 0.05
1 ×180 ×180 (8.0/8.6) (−9.13/-6.11) (−1.11/-0.33) (−0.62/-0.02) (0.01/0.18) (0.08/0.24)
F/28 L -5.5-0.25 -5.5 8.71 ± 0.29 -7.99 ± 1.09 -0.56 ± 0.21 -0.34 ± 0.12 0.18 ± 0.14 0.13 ± 0.06
  ×180   (8.3/9.1) (−9.84/-6.38) (−0.83/-0.18) (−0.55/-0.21) (0.03/0.36) (0.03/0.21)
  R -4.25 -4.25-0.25 5 6.40 ± 0.31 -5.88 ± 1.12 -0.73 ± 0.16 0.01 ± 0.06 0.09 ± 0.05 0.14 ± 0.05
2   ×180 (6.0/6.7) (−8.13/-3.88) (−1.02/-0.41) (−0.10/0.07) (0.04/0.18) (0.08/0.20)
F/33 L -4.25-0.5 -4.25-0.5 6.70 ± 0.34 -5.64 ± 1.73 -0.61 ± 0.22 0.01 ± 0.10 0.14 ± 0.04 0.16 ± 0.04
  ×180 ×180 (6.2/7.2) (−8.63/-3.88) (−0.93/-0.38) (−0.16/0.13) (0.06/0.23) (0.10/0.25)
  R -1.75-1.0 -1.75-0.75 6.00 ± 0.265 -1.97 ± 0.53 -1.44 ± 0.17 -0.00 ± 0.04 0.09 ± 0.02 0.19 ± 0.03
3 ×150 ×150 (5.6/6.4) (−2.73/-0.94) (−1.58/-1.08) (−0.06/0.09) (0.06/0.12) (0.17/0.26)
F/32 L -3.75-0.5 -3.75-0.5 6.08 ± 0.27 -4.36 ± 0.32 -0.91 ± 0.20 -0.03 ± 0.04 0.13 ± 0.07 0.14 ± 0.06
  ×180 ×180 (5.8/6.6) (−4.76/-3.89) (−1.09/-0.55) (−0.09/0.03) (0.02/0.26) (0.05/0.20)
  R -4.5-0.5 -4.5-0.5 7.86 ± 0.14 -5.39 ± 0.67 -0.98 ± 0.12 0.06 ± 0.04 0.17 ± 0.05 0.19 ± 0.05
4 ×170 ×170 (7.6/8.0) (−6.15/-4.28) (−1.14/-0.78) (0.01/0.12) (0.15/0.29) (0.10/0.28)
F/28 L -2.75-1.5 -2.75-1.5 7.65 ± 0.13 -3.31 ± 0.74 -2.00 ± 0.21 -0.02 ± 0.03 0.12 ± 0.02 0.09 ± 0.04
  ×180 ×180 (7.5/7.8) (−4.49/-2.55) (−2.24/-1.72) (−0.07/0.03) (0.09/0.17) (0.04/0.17)
  R -4.0-2.25 -3.5-1.75 6.89 ± 0.47 -4.31 ± 0.63 -2.67 ± 0.47 -0.13 ± 0.08 0.12 ± 0.06 0.11 ± 0.03
5 ×180 ×180 (6.2/7.6) (−5.16/-3.53) (−3.14/-1.81) (−0.21/0.04) (0.02/0.22) (0.06/0.17)
F/23 L -4.25-1.5 -4.25-1.25 6.79 ± 0.365 -4.98 ± 0.70 -2.14 ± 0.18 -0.18 ± 0.06 0.17 ± 0.06 0.09 ± 0.03
  ×180 ×180 (6.5/7.5) (−6.01/-3.88) (−2.33/-1.84) (−0.25/-0.06) (0.06/0.25) (0.05/0.14)
  R -5.75-0.5 -5.75-1.0 6.36 ± 0.44 -7.83 ± 1.44 -0.88 ± 0.19 0.07 ± 0.06 0.17 ± 0.09 0.09 ± 0.05
6 ×90 ×90 (5.3/7.0) (−10.81/-6.08) (−1.28/-0.63) (−0.06/0.15) (0.04/0.40) (0.04/0.20)
F/27 L -5.25-0.25 -5.25-0.25 6.13 ± 0.635 -7.97 ± 1.38 -0.44 ± 0.22 0.04 ± 0.11 0.17 ± 0.09 0.11 ± 0.04
  ×90 ×90 (4.4/6.5) (−9.99/-5.41) (−0.77/-0.23) (−0.13/0.32) (0.04/0.36) (0.04/0.20)
  R -4.25-0.25 -4.25 7.62 ± 0.20 -4.49 ± 0.22 -0.86 ± 0.16 -0.07 ± 0.02 0.32 ± 0.04 0.20 ± 0.04
7 ×180   (7.2/7.9) (−4.82/-4.19) (−1.09/-0.62) (−0.12/-0.04) (0.27/0.40) (0.14/0.25)
F/27 L -4.25-0.5 -4.25-0.75 7.80 ± 0.165 -4.23 ± 0.25 -1.11 ± 0.17 -0.07 ± 0.04 0.30 ± 0.06 0.25 ± 0.03
  ×30 ×30 (7.5/8.1) (−4.78/-4.02) (−1.26/-0.73) (−0.11/0.00) (0.22/0.42) (0.19/0.30)
  R -4.25 -4.0-0.25 7.15 ± 0.22 -4.18 ± 0.35 -0.31 ± 0.15 0.22 ± 0.06 0.10 ± 0.03 0.19 ± 0.04
8   ×90 (6.8/7.6) (−4.71/-3.69) (−0.56/-0.06) (0.14/0.32) (0.03/0.14) (0.13/0.28)
F/30 L -3.75-0.25 -3.75-0.25 7.23 ± 0.15 5 -3.17 ± 0.39 -0.35 ± 0.17 0.23 ± 0.05 0.31 ± 0.06 0.20 ± 0.03
  ×90 ×90 (7.0/7.5) (−4.23/-2.93) (−0.65/-0.04) (0.19/0.34) (0.23/0.41) (0.16/0.26)
  R -4.0-0.75 -3.75-0.5 6.10 ± 0.38 -3.97 ± 0.25 -0.86 ± 0.12 -0.03 ± 0.02 0.07 ± 0.02 0.06 ± 0.01
9 ×180 ×180 (5.6/6.4) (−4.38/-3.60) (−1.12/-0.70) (−0.08/0.00) (0.04/0.10) (0.04/0.09)
F/28 L -3.5-0.75 -3.25-1.25 6.14±0.385 -3.52 ± 0.23 -1.27 ± 0.13 -0.04 ± 0.02 0.11 ± 0.03 0.11 ± 0.01
  ×180 ×180 (5.6/6.6) (−3.71/-3.00) (−1.46/-1.08) (−0.08/0.00) (0.09/0.16 (0.09/0.13)
  R -4.75 -4.75 7.99 ± 0.22 -4.87 ± 0.27 -0.46 ± 0.14 0.05 ± 0.03 0.19 ± 0.06 0.16 ± 0.06
10     (7.7/8.3) (−5.36/-4.43) (−0.79/-0.27) (−0.01/0.09) (0.08/0.27) (0.09/0.25).
F/24 L -4.75-0.25 -4.75 7.98 ± 0.12 -4.97 ± 0.37 -0.90 ± 0.13 0.03 ± 0.02 0.20 ± 0.03 0.08 ± 0.03
  ×180   (7.8/8.1) (−5.79/-4.41) (−1.17/-0.72) (0.00/0.07) (0.14/0.27) (0.06/0.15)
Table 2.
Refractive data of patients underwent the wavefront guided refractive surgery
Patient No Sex/Age R/L Preop MR (diopter) Postop MR (diopter) UCVA Wavefront map used for surgery
Refraction SA Pupil size
1 R -5.5-0.5 ×180 Plano-0.75 ×160 20/20 -6.11-0.52×178 -0.147 8.5
F/28 L -5.5-0.25 ×180 Palno-0.25×10 20/20 -6.38-0.49×175 -0.208 9.1
2 R -4.25 -0.25-0.75×170 20/15 -4.62-0.69×171 0.026 6.7
F/33 L -4.25-0.5 ×180 Plano-0.5×10 20/15 -4.50-0.93×180 0.022 6.9
3 R -1.75-1.0 ×150 +0.75-0.25×140 20/20 -2.20-1.58×156 -0.038 6.1
F/32 L -3.75-0.5 ×180 -0.5 20/15 -3.97-1.06×18 0.003 6.3
4 R -4.5-0.5 ×170 -0.25 20/15 -4.74-1.12×168 0.100 8.0
F/28 L -2.75-1.5 ×180 +0.75-0.25×180 20/20 -2.75-1.92×178 0.039 7.5
5 R -4.0-2.25 ×180 Plano-0.5×145 20/20 -3.92-2.64×8 -0.142 7.2
F/23 L -4.25-1.5 ×180 Plano 20/15 -4.46-1.98×178 -0.158 6.7
6 R -5.75-0.5 ×90 +0.25 20/15 -6.08-0.81×69 0.140 6.4
F/27 L - -5.25-0.25 ×90 +0.25 20/15 -5.41-0.72×120 0.315 6.3
7 R - -4.25-0.25 ×180 -0.25 20/25 -4.49-1.09×8 -0.068 7.6
F/27 L -4.25-0.5 ×30 -050-0.5×170 20/25 -4.19-1.18×180 -0.034 7.8
8 R -4.25 -0.25 20/15 -4.18-0.15×96 0.318 7.3
F/30 L -3.75-0.25 ×90 +0.5-0.5×90 20/15 -3.83-0.41×2 0.187 7.0
9 R -4.0-0.75 ×180 -0.25 20/20 -4.15-0.88×5 -0.057 6.3
F/28 L -3.5-0.75 ×180 Plano-0.25×150 20/15 -3.64-1.28×7 -0.042 5.6
10 R -4.75 Plano-0.5×160 20/20 -4.99-0.42×175 0.091 7.7
F/24 L -4.75-0.25 ×180 -0.25-0.5×170 20/20 -5.01-0.88×6 0.036 8.1
TOOLS
Similar articles