Abstract
Purpose
To evaluate changes in anterior chamber depth (ACD) and angle after phacoemulsification and intraocular lens implantation using anterior segment optical coherence tomography (AS-OCT).
Methods
Seventy-eight eyes of 69 patients had uneventful phacoemulsification and IOL implantation using a clear corneal incision. Anterior segment OCT images of nasal and temporal angle quadrants were obtained before and at one month after surgery. The angle-referenced (ACD1), pupil-referenced (ACD2), lens-referenced (ACD3) ACDs, crystalline lens rise (CLR), nasal and temporal iridocorneal angles, angle opening distance at 500 μ m (AOD500), and trabecular iris surface area at 750 μ m (TISA750) were measured. Preoperative and postoperative measurements were compared using paired sample t-tests.
Results
The mean ACD1 was 3.19±0.24 mm preoperatively and 3.22±0.21 mm at one month postoperatively (P=0.21); ACD2 was 2.99±0.40 mm preoperatively and 3.56±0.28 mm at one month postoperatively (P<0.05); ACD3 was 2.75±0.41 mm preoperatively and 4.00±0.27 mm at one month postoperatively (P<0.05). The mean iridocorneal angles, AOD500, and TISA750 for both nasal and temporal sides increased significantly at the postoperative examinations (P<0.05).
References
1. Kucumen RB, Yenerel NM, Gorgun E, et al. Anterior segment optical coherence tomography measurement of anterior chamber depth and angle changes after phacoemulsification and intraocular lens implantation. J Cataract Refract Surg. 2008; 34:1694–8.
2. Nolan WP, See JL, Aung T, et al. Changes in angle configuration after phacoemulsification measured by anterior segment optical coherence tomography. J Glaucoma. 2008; 17:455–9.
3. Memarzadeh F, Tang M, Li Y, et al. Optical coherence tomography assessment of angle anatomy changes after cataract surgery. Am J Ophthalmol. 2007; 144:464–5.
4. Baikoff G, Lutun E, Ferraz C, Wei J. Static and dynamic analysis of the anterior segment with optical coherence tomography. J Cataract Refract Surg. 2004; 30:1843–50.
5. Baikoff G, Jitsuo Jodai H, Bourgeon G. Measurement of the internal diameter and depth of the anterior chamber: IOLMaster versus anterior chamber optical coherence tomographer. J Cataract Refract Surg. 2005; 31:1722–8.
6. Radhakrishnan S, Goldsmith J, Huang D, et al. Comparison of optical coherence tomography and ultrasound biomicroscopy for detection of narrow anterior chamber angles. Arch Ophthalmol. 2005; 123:1053–9.
7. Kurimoto Y, Park M, Sakaue H, Kondo T. Changes in the anterior chamber configuration after small-incision cataract surgery with posterior chamber intraocular lens implantation. Am J Ophthalmol. 1997; 124:775–80.
8. Goldsmith JA, Li Y, Chalita MR, et al. Anterior chamber width measurement by high-speed optical coherence tomography. Ophthalmology. 2005; 112:238–44.
9. Leung CK, Chan W-M, Ko CY, et al. Visualization of anterior chamber angle dynamics using optical coherence tomography. Ophthalmology. 2005; 112:980–4.
10. Hayashi K, Hayashi H, Nakao F, Hayashi F. Changes in anterior chamber angle width and depth after intraocular lens implantation in eyes with glaucoma. Ophthalmology. 2006; 107:698–703.
11. Rabsilber TM, Khoramnia R, Auffarth GU. Anterior chamber measurements using Pentacam rotating Scheimpflug camera. J Cataract Refract Surg. 2006; 32:456–9.
12. Nonaka A, Kondo T, Kikuchi M, et al. Angle widening and alteration of ciliary process configuration after cataract surgery for primary angle closure. Ophthalmology. 2006; 113:437–41.
13. Pereira FA, Cronemberger S. Ultrasound biomicroscopic study of anterior segment changes after phacoemulsification and foldable intraocular lens implantation. Ophthalmology. 2003; 110:1799–806.
14. Pavlin CJ, Harasiewicz K, Foster FS. Ultrasound biomicroscopy of anterior segment structures in normal and glaucomatous eyes. Am J Ophthalmol. 1992; 113:381–9.
15. Kohnen T, Thomala MC, Cichocki M, Strenger A. Internal anterior chamber diameter using optical coherence tomography compared with white-to-white distances using automated measurements. J Cataract Refract Surg. 2006; 32:1809–13.
16. Dada T, Sihota R, Gadia R, et al. Comparison of anterior segment optical coherence tomography and ultrasound biomicroscopy for assessment of the anterior segment. J Cataract Refract Surg. 2007; 33:837–40.
17. Radhakrishnan S, Rollins AM, Roth JE, et al. Real-time optical coherence tomography of the anterior segment at 1310 nm. Arch Ophthalmol. 2001; 119:1179–85.
18. Nolan WP, See JL, Chew PT, et al. Detection of primary angle closure using anterior segment optical coherence tomography in Asian eyes. Ophthalmology. 2007; 114:33–9.
19. Radhakrishnan S, See JL, Smith SD, et al. Reproducibility of anterior chamber angle measurements obtained with anterior segment optical coherence tomography. Invest Ophthalmol Vis Sci. 2007; 48:3683–8.
20. Spaeth GL. The normal development of the human anterior chamber angle: a new system of descriptive grading. Trans Ophthalmol Soc U K. 1971; 91:709–39.
Table 1.
Parameter |
Mean± SD† |
Increase | P-value* | |
---|---|---|---|---|
preoperative | postoperative | |||
ACD1‡ (mm) | 3.19±0.24 | 3.22±0.21 | 0.90% | P=0.215 |
ACD2§ (mm) | 2.99±0.40 | 3.56±0.28 | 20.70% | P<0.001 |
ACD3∏ (mm) | 2.75±0.41 | 4.00±0.27 | 45.50% | P<0.001 |
Nasal angle (degrees) | 19.87±12.53 | 32.79±10.52 | 65% | P<0.001 |
Temporal angle (degrees) | 21.54±12.10 | 33.02±8.89 | 53.30% | P<0.001 |
AOD500# nasal (mm) | 0.322±0.199 | 0.546±0.202 | 69.60% | P<0.001 |
AOD500# temporal (mm2) | 0.366±0.239 | 0.559±0.234 | 52.70% | P<0.001 |
TISA750** nasal (mm2) | 0.218±0.127 | 0.362±0.127 | 66.10% | P<0.001 |
TISA750** temporal (mm2) | 0.248±0.145 | 0.371±0.149 | 49.60% | P<0.001 |