Journal List > J Korean Ophthalmol Soc > v.51(8) > 1008613

Kim, Kim, Jun, Kim, and Chung: The Preoperative Prognostic Factors for Outcome After LASEK Using the MEL60

Abstract

Purpose

To investigate the preoperative clinical factors affecting the refractive outcome after laser-assisted subepithelial keratomileusis (LASEK).

Methods

This retrospective study was conducted on 58 patients (116 eyes) who underwent bilateral LASEK using the MEL60. The outcome efficacy and predictability of LASEK was examined by analyzing data including age, gender, pre-operative uncorrected visual acuity, preoperative refraction (spherical equivalent and cylindrical diopter), central corneal thickness, tear breakup time, and Schirmer test through multiple logistic regression analysis.

Results

The preoperative factor associated with postoperative uncorrected visual acuity was the amount of preoperative spherical equivalent. Greater preoperative spherical equivalent was associated with decreased efficacy. Predictability was also associated with the amount of preoperative spherical equivalent. Greater preoperative spherical equivalent was associated with decreased predictability. The other preoperative factors including sex, age, preoperative uncorrected visual acuity, amount of preoperative cylinder diopter, intraocular pressure, tear breakup time, Schirmer test and central corneal thickness did not show any association with efficacy or predictability.

Conclusions

The preoperative spherical equivalent was determined as the most important prognosis factor in LASEK, as it is in PRK or LASIK.

References

1. Camellin M. Laser epithelial keratomileusis for myopia. J Refract Surg. 2003; 19:666–70.
crossref
2. Cimberle M. LASEK may offer the advantage of both LASIK and PRK. Ocular Surgery News. 1999; 28.
3. Seiler T, Quurke AW. Iatrogenic keratectasia after LASIK in a case of forme fruste keratoconus. J Cataract Refract Surg. 1998; 24:1007–9.
crossref
4. Haw WW, Manche EE. Iatrogenic keratectasia after a deep primary keratotomy during laser in situ keratomileusis. Am J Ophthalmol. 2001; 132:920–1.
crossref
5. Teus MA, de Benito-Llopis L, Sánchez-Pina JM. LASEK versus LASIK for the correction of moderate myopia. Optom Vis Sci. 2007; 84:605–10.
crossref
6. Kim JK, Kim SS, Lee HK, et al. Laser in situ keratomileusis versus laser-assisted subepithelial keratectomy for the correction of high myopia. J Cataract Refract Surg. 2004; 30:1405–11.
crossref
7. Autrata R, Rehurek J. Laser-assisted subepithelial keratectomy and photorefractive keratectomy for the correction of hyperopia. Results of a 2-year follow-up. J Cataract Refract Surg. 2003; 29:2105–14.
crossref
8. Lee JB, Seong GJ, Lee JH, et al. Comparison of laser epithelial keratomileusis and photorefractive keratectomy for low to moderate myopia. J Cataract Refract Surg. 2001; 27:565–70.
crossref
9. Kamm O. The relation between structure and physiological action of the alcohols. J Am Pharm Assoc. 1921; 10:87–92.
10. Ditzen K, Handzel A, Pieger S. Laser in situ keratomileusis nomo-gram development. J Refract Surg. 1999; 15:197–201.
11. Pérez-Santonja JJ, Bellot J, Claramonte P, et al. Laser in situ keratomileusis to correct high myopia. J Cataract Refract Surg. 1997; 23:372–85.
crossref
12. Hersh PS, Schein OD, Steinert R. Characteristics influencing outcomes of excimer laser photorefractive keratectomy; the Summit Photorefractive Keratectomy Phase III Study Group. Ophthalmology. 1996; 103:1962–9.
13. Walter KA, Stevenson AW. Effect of environmental factors on myopic LASIK enhancement rates. J Cataract Refract Surg. 2004; 30:798–803.
crossref
14. Perlman EM, Reinert SE. Factors influencing the need for enhancement after laser in situ keratomileusis. J Refract Surg. 2004; 20:783–9.
crossref
15. Taneri S, Zieske JD, Azar DT. Evolution, techniques, clinical outcomes, and pathophysiology of LASEK: review of the literature. Surv Ophthalmol. 2004; 49:576–602.
crossref
16. Park KC, Choi TH, Lee HB. Multiple Logistic Regression Analysis of Factors in Refractive Outcome of Photorefractive Keratectomy (PRK). J Korean Ophthalmol Soc. 2001; 42:1186–93.
17. Kim SY, Sah WJ, Lim YW, Hahn TW. Twenty percent alcohol toxicity on rabbit corneal epithelial cell: electron microscopic study. Cornea. 2002; 21:388–92.
18. Carones F, Fiore T, Brancato R. Mechanical VS. alcohol epithelial removal during photorefractive keratectomy. J Refract Surg. 1999; 15:556–62.
19. Kanitkar KD, Camp J, Humble H, et al. Pain after epithelial removal by ethanol assisted mechanical versus transepithelial excimer laser debridement. J Refract Surg. 2000; 16:519–22.
20. Stein HA, Stein RM, Price C, Salim GA. Alcohol removal of the epithelium for excimer laser ablation: outcomes analysis. J Cataract Refract Surg. 1997; 23:1160–3.
crossref
21. Scerrati E. Laser in situ keratomileusis vs laser epithelial keratomileusis (LASIK vs LASEK). J Refract Surg. 2001; 17:S219–21.
crossref
22. Rouweyha RM, Chuang AZ, Yee RW. Laser epithelial keratomileusis for myopia with the autonomous laser. J Refract Surg. 2002; 18:217–24.
crossref
23. Dastjerdi MH, Soong HK. LASEK(laser subepithelial keratomileusis). Curr Opin Ophthalmol. 2002; 13:261–3.
24. Litwak S, Zadok D, Garcia-de Quevedo V, et al. Laser-assisted subepithelial keratectomy versus photorefractive keratectomy for the correction of myopia. J Cataract Refract Surg. 2002; 28:1330–3.
crossref
25. Partal AE, Rojas MC, Manche EE. Analysis of the efficacy, predictability, and safety of LASEK for myopia and myopic astigmatism using the Technolas 217 excimer laser. J Cataract Refract Surg. 2004; 30:2138–44.
crossref
26. Taneri S, Feit R, Azar DT. Safety, efficacy, and stability indices of LASEK correction in moderate myopia and astigmatism. J Cataract Refract Surg. 2004; 30:2130–7.
crossref
27. Claringbold TV 2nd. Laser-assisted subepithelial keratectomy for the correction of myopia. J Cataract Refract Surg. 2002; 28:18–22.
crossref
28. Autrata R, Rehurek J. Laser-assisted subepithelial keratectomy for myopia: two-year follow-up. J Cataract Refract Surg. 2003; 29:661–8.
crossref
29. Azar DT, Ang RT, Lee JB, et al. Laser subepithelial keratomileusis: electron microscopy and visual outcomes of flap photorefractive keratectomy. Curr Opin Ophthalmol. 2001; 12:323–8.
crossref
30. Hefetz L, Domnitz Y, Haviv D, et al. Influence of patient age on refraction and corneal haze after photorefractive keratectomy. Br J Ophthalmol. 1997; 81:637–8.
crossref
31. Lee JK, Choi WS, Choi YI. excimer laser photorefractive keratectomy for high myopia. J Korean Ophthalmol Soc. 1994; 35:927–34.
32. Shin JC, Baek CE, Kim DS, Choe JK. Excimer Laser Photorefractive Keratectomy for the Correction of Compound Myopic Astigmatism: One Year Follow-Up. J Korean Ophthalmol Soc. 1997; 38:734–8.
33. Randleman JB, White AJ Jr, Lynn MJ, et al. Incidence, outcomes, and risk factors for retreatment after wavefront optimized ablations with PRK and LASIK. J Refract Surg. 2009; 25:273–6.

Table 1.
Characteristics of eyes for LASEK*
Parameter  
Age (yr) 25.8 ± 5.43
Gender (male/female) 19/39
Preoperative UCVA (logMAR) 1.18 ± 0.37
Preoperative manifest refractive SE (D) −4.90 ± 1.50
Pachymetry (µm) 548.9 ± 40.5
Schirmer test (mm) 16.81 ± 5.12
Tear breakup time (second) 7.08 ± 2.77
Intraocular pressure (mmHg) 15.16 ± 2.78
Mild myopia 32 eyes (27.6%)
Moderate myopia 53 eyes (45.7%)
High myopia 31 eyes (26.7%)
Total 116 eyes

LASEK*=laser-assisted subepithelial keratomileusis

UCVA= uncorrected visual acuity

SE=spherical equivalent.

Table 2.
Preoperative characteristics associated with UCVA* <20/25 6 months after LASEK (Efficacy)
Factor   No. of eyes Odd ratio 95% CI P value
Sex Male 38 (32.7%) 1    
  Female 78 (67.3%) 3.974 0.563∼28.071 0.167
IOP ≤15 59 (50.8%) 1    
  >15 57 (49.2%) 1.145 0.300∼4.364 0.843
Age <20 8 (6.9%) 1    
  20≤<30 84 (72.4%) 0.101 0.007∼1.557 0.101
  30≤ 24 (21.7%) 0.064 0.003∼1.248 0.070
SE§ <-4D 32 (27.6%) 1    
  −4D≤<-6D 53 (45.7%) 5.614 0.432∼72.975 0.187
  −6D≤ 31 (26.7%) 20.939 1.464∼299.437 0.025
Astigmatism <-1D 75 (64.6%) 1    
  −1D≤<-2D 29 (25%) 1.958 0.494∼7.762 0.339
  −2D≤ 12 (10.4%) 0.465 0.038∼5.643 0.548
Tear breakup time ≥10 42 (36.2%) 1    
  <10 74 (63.8%) 2.192 0.309∼15.554 0.432
Schirmer ≥10 99 (85.4%) 1    
  <10 17 (14.6%) 0.813 0.121∼5.436 0.831
Preoperative UCVA* ≥2/20 29 (25%) 1    
  <2/20 87 (75%) 0.897 0.149∼5.404 0.905
Preoperative corneal thickness <550 52 (44.8%) 1    
  ≥550 64 (55.2%) 3.585 0.841∼15.275 0.084

* UCVA = uncorrected visual acuity

LASEK = laser assisted subepithelial keratomileusis

CI = confidence interval

SE§ = spherical equivalent

p = multiple logistic regression analysis.

Table 3.
Average of uncorrected visual acuity and spherical equivalent 6 months after LASEK*
Group UCVA (logMAR) SE
<-4.0D 0.036 ± 0.095 −0.35 ± 0.41
−4.0D≤<-6.0D 0.040 ± 0.073 −0.60 ± 0.62
−6.0D≤ 0.087 ± 0.116 −0.72 ± 0.85

LASEK*=laser assisted subepithelial keratomileusis

UCVA= uncorrected visual acuity

SE = spherical equivalent.

Table 4.
Preoperative characteristics associated with refractive error outside ± 1.0D 6 months after LASEK* (Predictability)
Factor   No. of eyes Odd ratio 95% CI P value
Sex Male 38 (32.7%) 1    
  Female 78 (67.3%) 1.182 0.278–5.027 0.821
IOP ≤15 59 (50.8%) 1    
  >15 57 (49.2%) 3.107 0.993–9.722 0.051
Age <20 8 (6.9%) 1    
  20≤<30 84 (72.4%) 0.150 0.015–1.511 0.107
  30≤ 24 (21.7%) 0.173 0.014–2.127 0.170
SE§ <-4D 32 (27.6%) 1    
  −4D≤<-6D 53 (45.7%) 11.907 1.172–120.994 0.036
  −6D≤ 31 (26.7%) 18.150 1.567–210.245 0.020
Astigmatism <-1D 75 (64.6%) 1    
  −1D≤<-2D 29 (25%) 1.520 0.419–5.516 0.524
  −2D≤ 12 (10.4%) 4.253 0.874–20.705 0.073
Tear breakup time ≥10 42 (36.2%) 1    
  <10 74 (63.8%) 0.952 0.228–3.981 0.946
Schirmer ≥10 99 (85.4%) 1    
  <10 17 (14.6%) 0.499 0.081–3.059 0.453
Preoperative UCVA ≥2/20 29 (25%) 1    
  <2/20 87 (75%) 1.739 0.367–8.231 0.485
Preoperative corneal thickness <550 52 (44.8%) 1    
  ≥550 64 (55.2%) 1.331 0.397–4.457 0.643

* LASEK=laser assisted subepithelial keratomileusis

UCVA=uncorrected visual acuity

CI=confidence interval

§ SE=spherical equivalent

p=multiple logistic regression analysis.

TOOLS
Similar articles