Journal List > J Korean Ophthalmol Soc > v.50(12) > 1008452

Woo, Lee, and Rah: Change in Angle Deviation After Visual Acuity Improvement in Monocular Deviated Patients

Abstract

Purpose

Anisometropia can lead to monocular deviation if the refractive error is not corrected. Therefore, the authors evaluated the change in angle deviation after visual acuity improvement by refractive correction in monocular deviated patients with anisometropia.

Methods

Changes in angle deviation were collated retrospectively for 9 patients with anisometric monocular deviation, 7 with monocular exotropia and 2 with monocular esotropia, according to medical records. The patients were admitted for strabismus surgery performed using cataract extraction or clear lens extraction (8 patients) or were treated nonsurgically using contact lenses for visual acuity recovery (1 patient).

Results

Prior to corrective measures, patients with exotropia had, on average, exodeviation of 40.43 PD, and those with esotropia had, on average, esodeviation of 27.50 PD. After corrective measures were taken, all 7 exotropia patients had decreased angle deviation, and, upon final evaluation, exodeviation had decreased to 21.71 PD, on average. In two exotropia patients, measures taken to correct refractive error shifted the exotropia to exophoria. There was no change in angle deviation after Corrective measures in 2 esotropia patients.

Conclusions

In cases of exotropia caused by decreased visual acuity, correction of the visual acuity should be performed first if the correction is possible. After the recovery of visual acuity, a significant decrease in angle deviation occurs.

References

1. Abrahamsson M, Fabian G, Sjostrand J. A longitudianl study of a population based sample of astigmatic children, II. The changeability of anisometropia. Acta Ophthalmol. 1990; 68:435–40.
2. Abrahamsson M, Sjostrand J. Natural history of infantile anisometropia. Br J Ophthalmol. 1996; 80:860–3.
crossref
3. Sengpiel F, Jirmann KU, Vorobyov V, Eysel UT. Strabismic suppression is mediated by inhibitory interactions in the primary visual cortex. Cereb Cortex. 2006; 16:1750–8.
crossref
4. Sjostrand J, Abrahamsson M. Risk factors in amblyopia. Eye. 1990; 4:787–93.
crossref
5. Nucci P, Drack AV. Refractive surgery for unilateral high myopia in children. J AAPOS. 2001; 5:348–51.
crossref
6. Autrata R, Rehurek J. Laser-assisted subepithelial keratectomy and photorefractive keratectomy versus conventional treatment of myopic anisometropic amblyopia in children. J Cataract Refract Surg. 2004; 30:74–84.
crossref
7. Ali A, Packwood E, Lueder G, Tychsen L. Unilateral lens extraction for high anisometropic myopia in children and adolescents. J AAPOS. 2007; 11:153–8.
crossref
8. Godts D, Trau R, Tassignon MJ. Effect of refractive surgery on binocular vision and ocular alignment in patients with manifest or intermittent strabismus. Br J Ophthalmol. 2006; 90:1410–3.
crossref
9. Nucci P, Drack AV. Refractive surgery for unilateral high myopia in children. J AAPOS. 2001; 5:348–51.
crossref
10. Sorsby A, Leary GA, Richards MJ. The optical components in anisometropia. Vis Res. 1962; 2:43–51.
crossref
11. Zadnik K, Satoriano WA, Mutti DO, et al. The effect of parental history of myopia on children's eye size. JAMA. 1994; 271:1323–7.
crossref
12. Young TL, Ronan SM, Alvear AB, et al. A second locus for familial high myopia maps to chromosome 12q. Am J Hum Genet. 1998; 63:1419–24.
crossref
13. Weiss AH. Unilateral high myopia: optical components, associated factors, and visual outcomes. Br J Ophthalmol. 2003; 87:1025–31.
crossref
14. Hussein MA, Coats DK, Muthialu A, et al. Risk factors for treatment failure of anisometropic amblyopia. J AAPOS. 2004; 8:429–34.
crossref
15. Helveston EM. Relationship between degree of anisometropia and depth of amblyopia. Am J Ophthalmol. 1966; 62:757–9.
crossref
16. Brooks SE, Johnson D, Fischer N. Anisometropia and binocularity. Ophthalmology. 1996; 103:1139–43.
crossref
17. McMullen WH. Some points in anisometropia in discussion on problem in refraction. Trans Ophthalmol Soc U K. 1939; 59:119.
18. Kivlin JD, Flynn JT. Therapy of anisometropic amblyopia. J Pediatr Ophthalmol Strabismus. 1981; 18:47–56.
crossref
19. Holmes JM, Kraker RT, Beck RW, et al. A randomized trial of prescribed patching regimens for treatment of severe amblyopia in children. Ophthalmology. 2003; 110:2075–87.
crossref
20. Nemet P, Levinger S, Nemet A. Refractive surgery for refractive errors which cause strabismus. Binocul Vis Strabismus Q. 2002; 17:187–90.
21. Hoyos JE, Cigales M, Maldonado-bas , et al. Hyperopic LASIK may work well in refractive accommodative esotropia. Ocular Surg News. 1998; 16:93–4.
22. Haw WW, Alcorn DM, Manche EE. Excimer laser refractive surgery in the pediatric population. J Pediatr Ophthalmol Strabismus. 1999; 36:173–7.
crossref
23. Sabetti L, Spadea L, D'Alessandri L, Balestrazzi E. Photorefractive keratectomy and laser in situ keratomileusis in refractive accommodative esotropia. J Cataract Refract Surg. 2005; 31:1899–903.
crossref
24. Hubel DH, Wiesel TN. Recptive fields of optic nerve fibers in th spinder monkey. J Physiol. 1960; 154:572–80.
25. Korean association for pediatric ophthalmology and strabismus, Current concepts in strabismus. 2nd ed.Seoul: Naewae Haksool;2008. p. 171–2.

Figure 1.
Serial changes in angle deviation amounts in exotropia. PD=prism diopter.
jkos-50-1868f1.tif
Figure 2.
Serial change of angle deviation amounts in esotropia. PD=prism diopter.
jkos-50-1868f2.tif
Figure 3.
Digital photograph of monocular deviation in anisometric patient before surgery.
jkos-50-1868f3.tif
Figure 4.
Digital photograph of recovered monocular deviation in anisometric patient after surgery.
jkos-50-1868f4.tif
Table 1.
Clinical data and angle deviation outcomes in patients who underwent refractive correction
No. Age/Sex Procedure Follow up period VA without correction
VA with correction
Angle deviation
Pre-Op Post-Op Pre-Op Post-Op Pre-Op Post-Op
1 48/F Cataract 84 F.C/50cm 20/100 −sph17.00 –cyl4.00 −sph3.25 –cyl3.00 75△ XT 50△ XT
    extraction       Ax180 (20/70-) Ax180 (20/50+)    
2 51/F Cataract 12 10/200 20/70 −sph8.00 –cyl2.50 −sph1.50 –cyl1.00 18△ XT 8△ X
    extraction       Ax90 (20/70) Ax120 (20/50)    
3 34/F Clear lens 15 20/200 20/50 −sph9.00 –cyl0.50 −sph1.00 –cyl0.50 35△ XT 20△ XT
    extraction       Ax180 (20/50) Ax90 (20/30)    
4 36/F Clear lens 14 20/200 20/70 −sph13.00 −sph2.00 +cyl2.00 40△ XT 28△ XT
    extraction       (20/50+) Ax90 (20/30-)    
5 48/F Cataract 13 20/200 20/70- −sph10.00 –cyl4.00 −sph2.25 +cyl1.50 45△ XT 30△ XT
    extraction       Ax90 (20/50) Ax170 (20/30-)    
6 55/F Cataract 19 10/200 20/100 −sph9.00 −sph1.50 –cyl0.50 50△ XT 10△ XT
    extraction       (20/70) Ax90 (20/50)    
7 20/M Clear lens 17 5/200 20/20 −sph16.00 –cyl4.00 Plano (20/20) 30△ ET 30△ ET
    extraction       Ax180 (20/30)      
8 31/M Clear lens 12 20/100 20/70 −sph8.75 −sph1.75 (20/25) 25△ ET 25△ ET
    extraction       (20/30)      
No. Age/Sex Procedure Follow up period VA without correction VA with correction without correction with correction
9 38/F Contact lens 75 20/200 −sph6.50 (20/20) 20△ XT 6△ X

VA=visual acuity; XT=exotropia; X=Exophoria; ET=esotropia.

Table 2.
Changes in angle deviation after refractive error correction
  Average of angle deviation
Changed amount in angle deviation
Pre correction Post correction
XT 40.43±19.40PD 21.71±15.72PD 18.71PD
ET 27.50±3.54PD 27.50±3.54PD 0PD

XT=exotropia; ET=Esotropia; PD=prism diopter.

TOOLS
Similar articles