Journal List > J Korean Ophthalmol Soc > v.50(11) > 1008412

Bae, Kim, and Kim: Spherical Aberration, Contrast Sensitivity and Depth of Focus With Three Aspherical Intraocular Lenses

Abstract

Purpose

To evaluate postoperative spherical aberration, contrast sensitivity and depth of focus after implanting 3 different aspheric intraocular lenses.

Methods

Fifty-six eyes (18 eyes for Akreos adapt Advanced Optics (AO), 20 eyes for AcrySof IQ SN60WF and 18 eyes for Tecnis Acrylic IOL ZA9003) of 48 patients were evaluated. Internal ocular aberration including spherical aberration and higher-order aberration and contrast sensitivity were evaluated 3 months after lens implantation. In addition, visual acuities at 33 cm and 1 m distance were measured with the far vision corrected state to calculate depth of focus.

Results

The total and internal ocular spherical aberration of the AO implanted group was slightly higher than the other groups with statistical significance. However, there was no statistically significant difference of contrast sensitivity and depth of focus among the 3 groups.

Conclusions

A subtle difference of spherical aberration among the 3 groups without a statistically significant difference in other factors may not induce the differences of contrast sensitivities and depths of focus in each group.

References

1. Werner L, Olson RJ, Mamalis N. New Technology IOL Optics. Ophthalmol Clin North Am. 2006; 19:469–83.
2. Guirao A, Redondo M, Artal P. Optical aberrations of the human cornea as a function of age. J Opt Soc Am A Opt Image Sci Vis. 2000; 17:1697–702.
crossref
3. McLellan JS, Marcos S, Burns SA. Age-related changes in mono-chromatic wave aberrations of the human eye. Invest Ophthalmol Vis Sci. 2001; 42:1390–5.
4. Oshika T, Klyce SD, Applegate RA, Howland HC. Changes in corneal wavefront aberrations with aging. Invest Ophthalmol Vis Sci. 1999; 40:1351–5.
5. Artal P, Berrio E, Guirao A, Navarro R. Contribution of the cornea and internal surface to the change of ocular aberrations with age. J Opt Soc Am A Opt Image Sci Vis. 2002; 19:137–43.
6. Artal P, Guirao A, Berrio E, Williams DR. Compensation of corneal aberrations by the internal optics in the human eye. J Vis. 2001; 1:1–8.
crossref
7. Rawer R, Stork W, Spraul CW, Lingenfelder C. Imaging quality of intraocular lenses. J Cataract Refract Surg. 2005; 31:1618–31.
crossref
8. Chalita MR, Krueger RR. Correlation of aberrations with visual acuity and symptoms. Ophthalmol Clin North Am. 2004; 17:135–42.
crossref
9. Guirao A, Redondo M, Geraghty E, et al. Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted. Arch Ophthalmol. 2002; 120:1143–51.
crossref
10. Holladay JT, Piers PA, Koranyi G, et al. A new intraocular lens design to reduce spherical aberration of pseudophakic eyes. J Refract Surg. 2002; 18:683–91.
crossref
11. Rocha KM, Soriano ES, Chamon W, et al. Spherical Aberration and Depth of Focus in Eyes Implanted with Aspheric and Spherical Intraocular Lenses. Ophthalmology. 2007; 114:2050–4.
crossref
12. Elder MJ, Murphy C, Sanderson GF. Apparent accommodation and depth of field in pseudophakia. J Cataract Refract Surg. 1996; 22:615–9.
crossref
13. Sawusch MR, Guyton DL. Optimal astigmatism to enhance depth of focus after cataract surgery. Ophthalmology. 1991; 98:1025–9.
crossref
14. Holladay JT, Piers PA, Koranyi G, et al. A new intraocular lens design to reduce spherical aberration of pseudophakic eyes. J Refract Surg. 2002; 18:683–91.
crossref
15. Olson RJ, Werner L, Mamalis N, Cionni R. New intraocular lens technology. Am J Ophthalmol. 2005; 140:709–16.
crossref
16. Caporossi A, Martone G, Casprini F, Rapisarda L. Prospective randomized study of clinical performance of 3 aspheric and 2 spherical intraocular lenses in 250 eyes. J Refract Surg. 2007; 23:639–48.
crossref
17. Mester U, Dillinger P, Anterist N. Impact of a modified optic design on visual function: clinical comparative study. J Cataract Refract Surg. 2003; 29:652–60.
crossref
18. Rocha K, Soriano E, Chalita M, et al. Wavefront Analysis and Contrast Sensitivity of Aspheric and Spherical Intraocular Lenses. Am J Opthalmol. 2006; 142:750–6.
19. Tzelikis P, Akaishi L, Trindade F, Boteon JE. Spherical Aberration and Contrast Sensitivity in Eyes Implanted with Aspheric and Spherical Intraocular Lenses: A Comparative Study. Am J Ophthalmol. 2008; 145:827–33.
crossref
20. Ahn H, Kim SW, Kim EK, Kim TI. Wavefront and Visual Function Analysis After Aspherical and Spherical Intraocular Lenses Implan-tation. J Korean Ophthalmol Soc. 2008; 49:1248–55.
crossref
21. Kim HS, Kim SW, Ha BJ, et al. Ocular Aberrations and Contrast Sensitivity in Eyes Implanted with Aspheric and Spherical Intraocular Lenses. J Korean Ophthalmol Soc. 2008; 49:1256–62.
crossref
22. Franchini A. Compromise between spherical and chromatic aberration and depth of focus in aspheric intraocular lenses. J Cataract Refract Surg. 2007; 33:497–509.
crossref
23. Altmann GE, Nichamin LD, Lane SS, Pepose JS. Optical performance of 3 intraocular lens designs in the presence of decentration. J Cataract Refract Surg. 2005; 31:574–85.
crossref
24. Holladay JT, Piers PA, Koranyi G, et al. A new intraocular lens design to reduce spherical aberration of pseudophakic eyes. J Refract Surg. 2002; 18:683–91.
crossref
25. Wang L, Dai E, Koch DD, Nathoo A. Optical aberrations of the human anterior cornea. J Cataract Refract Surg. 2003; 29:1514–21.
crossref
26. Beiko GH, Haigis W, Steinmueller A. Distribution of corneal spherical aberration in a comprehensive ophthalmology practice and whether keratometry can predict aberration values. J Cataract Refract Surg. 2007; 33:848–58.
crossref
27. Levy Y, Segal O, Avni I, Zadok D. Ocular higher-order aberrations in eyes with supernormal vision. Am J Ophthalmol. 2005; 139:225–8.
crossref
28. Tzelikis P, Akaishi L, Trindade F, Boteon J. Ocular aberrations and contrast sensitivity after cataract surgery with AcrySof IQ intraocular lens implantation. J Cataract Refract Surg. 2007; 33:1918–24.
crossref
29. Awwad ST, Lehmann JD, McCulley JP, Bowman RW. A comparison of higher order aberrations in eyes implanted with AcrySof IQ SN60WF and AcrySof SN60AT intraocular lenses. Eur J Ophthalmol. 2007; 17:320–6.
crossref
30. Johansson B, Sundelin S, Wikberg-Matsson A, et al. Visual and optical performance of the Akreos Adapt Advanced Optics and Tecnis Z9000 intraocular lenses: Swedish multicenter study. J Cataract Refract Surg. 2007; 33:1565–72.
31. Dietze HH, Cox MJ. Limitations of correcting spherical aberration with aspheric intraocular lenses. J Refract Surg. 2005; 21:S541–6.
crossref
32. Lee DY, Roh JH, Shyn KH. 2005 survey for KSCRS members. J Korean Ophthalmol Soc. 2007; 48:485–92.

Figure 1.
Contrast sensitivity test of three groups at photopic condition (A) and mesopic condition (B). There was no statistically significant difference among three groups.
jkos-50-1639f1.tif
Table 1.
Optical characteristics of the aspherical IOLs* used in the study
Charateristics Akreos adapt AO AcrySof IQ SN60WF Tecnis ZA9003
Optic type Monofocal Monofocal Monofocal
Lens 1-piece 1-piece 3-piece
Optical material Hydrophilic acrylic Hydrophobic acrylic Hydrophobic acrylic
Refractive index 1.458 1.55 1.47
Optic size (mm) 6 6 6
Overall length (mm) 10.5∼11.0 13 13
Design Prolate anterior and posterior surfaces Prolate posterior surface Prolate anterior surface
Haptic angulation 0 0 5
Haptic material Hydrophilic acrylic Hydrophobic acrylic PMMA monofilament
Sph A (μm) 0 −0.20 −0.27

*IOLs=intraocular lens

PMMA=polymethylmethacrylate

Sph A=spherical aberration.

Table 2.
Demographics of study groups
  Akreos adapt AO AcrySof IQ SN60WF Tecnis ZA9003 p-value
No* of eyes (%) 18 20 18  
OD:OS 9:9 10:10 9:9  
Gender (M:F) 6:12 10:10 10:8  
Mean Age (± SD) 62.29 (±8.89) 64.21 (±8.85) 64.92 (±13.43) 0.789
BCVA (± SD) −0.02 (±0.12) 0.04 (±0.06) 0.03 (±0.05) 0.195

All values are displayed as logMAR visual acuity.

*No=number

SD=standard deviation

BCVA=best corrected visual acuity.

Table 3.
Total ocular aberrations (μm) of three groups measured by iTrace® (Mean± Standard deviation)
IOL groups RMS* total HO A Sph A Coma 7A Coma 8A Trefoil 6A Trefoil 9A
AO 1.46±0.38 0.80±0.33 0.26±0.20 −0.09±0.24 0.12±0.31 0.12±0.29 −0.04±0.28
IQ 1.46±0.64 0.63±0.26 0.00±0.14 0.07±0.23 0.06±0.26 0.12±0.40 −0.07±0.25
Tecnis 1.09±0.39 0.56±0.21 −0.01±0.13 −0.01±0.23 −0.02±0.23 −0.09±0.29 0.07±0.21
p-value 0.107 0.071 0.000§ 0.143 0.385 0.198 0.351

*RMS=root mean square

HO A=higher-order aberration

Sph A=spherical aberration

§Statistically significant (p<0.05).

Table 4.
Internal aberrations (μm) of three groups measured by iTrace® (Mean± Standard deviation)
IOL groups RMS* total HO A Sph A Coma 7A Coma 8A Trefoil 6A Trefoil 9A
AO 1.54±0.69 0.90±0.44 −0.02±0.17 −0.14±0.34 0.13±0.27 0.20±0.36 −0.28±0.31
IQ 1.69±0.70 0.80±0.40 −0.22±0.16 0.06±0.28 0.05±0.22 0.16±0.44 −0.08±0.27
Tecnis 1.44±0.70 0.60±0.24 −0.28±0.10 −0.09±0.19 0.01±0.27 0.10±0.33 −0.02±0.25
p-value 0.605 0.134 0.000§ 0.116 0.455 0.810 0.072

*RMS=root mean square

HO A=higher-order aberration

Sph A=spherical aberration

§Statistically significant (p<0.05).

Table 5.
Visual acuities and depth of focus (Mean± Standard deviation)
  AO IQ Tecnis p-value
Far* −0.02±0.12 0.04±0.06 0.03±0.05 0.195
Intermediate 0.26±0.17 0.26±0.15 0.31±0.12 0.681
Near 0.55±0.29 0.53±0.13 0.56±0.22 0.936
Depth of focus 0.40±0.21 0.39±0.09 0.43±0.15 0.812

All values are displayed as logMAR visual acuity.

*Best corrected visual acuity

Distance-corrected visual acuity

Mean of intermediate visual acuity and near visual acuity.

TOOLS
Similar articles