Abstract
Purpose
To evaluate postoperative spherical aberration, contrast sensitivity and depth of focus after implanting 3 different aspheric intraocular lenses.
Methods
Fifty-six eyes (18 eyes for Akreos adapt Advanced Optics (AO), 20 eyes for AcrySof IQ SN60WF and 18 eyes for Tecnis Acrylic IOL ZA9003) of 48 patients were evaluated. Internal ocular aberration including spherical aberration and higher-order aberration and contrast sensitivity were evaluated 3 months after lens implantation. In addition, visual acuities at 33 cm and 1 m distance were measured with the far vision corrected state to calculate depth of focus.
References
1. Werner L, Olson RJ, Mamalis N. New Technology IOL Optics. Ophthalmol Clin North Am. 2006; 19:469–83.
2. Guirao A, Redondo M, Artal P. Optical aberrations of the human cornea as a function of age. J Opt Soc Am A Opt Image Sci Vis. 2000; 17:1697–702.
3. McLellan JS, Marcos S, Burns SA. Age-related changes in mono-chromatic wave aberrations of the human eye. Invest Ophthalmol Vis Sci. 2001; 42:1390–5.
4. Oshika T, Klyce SD, Applegate RA, Howland HC. Changes in corneal wavefront aberrations with aging. Invest Ophthalmol Vis Sci. 1999; 40:1351–5.
5. Artal P, Berrio E, Guirao A, Navarro R. Contribution of the cornea and internal surface to the change of ocular aberrations with age. J Opt Soc Am A Opt Image Sci Vis. 2002; 19:137–43.
6. Artal P, Guirao A, Berrio E, Williams DR. Compensation of corneal aberrations by the internal optics in the human eye. J Vis. 2001; 1:1–8.
7. Rawer R, Stork W, Spraul CW, Lingenfelder C. Imaging quality of intraocular lenses. J Cataract Refract Surg. 2005; 31:1618–31.
8. Chalita MR, Krueger RR. Correlation of aberrations with visual acuity and symptoms. Ophthalmol Clin North Am. 2004; 17:135–42.
9. Guirao A, Redondo M, Geraghty E, et al. Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted. Arch Ophthalmol. 2002; 120:1143–51.
10. Holladay JT, Piers PA, Koranyi G, et al. A new intraocular lens design to reduce spherical aberration of pseudophakic eyes. J Refract Surg. 2002; 18:683–91.
11. Rocha KM, Soriano ES, Chamon W, et al. Spherical Aberration and Depth of Focus in Eyes Implanted with Aspheric and Spherical Intraocular Lenses. Ophthalmology. 2007; 114:2050–4.
12. Elder MJ, Murphy C, Sanderson GF. Apparent accommodation and depth of field in pseudophakia. J Cataract Refract Surg. 1996; 22:615–9.
13. Sawusch MR, Guyton DL. Optimal astigmatism to enhance depth of focus after cataract surgery. Ophthalmology. 1991; 98:1025–9.
14. Holladay JT, Piers PA, Koranyi G, et al. A new intraocular lens design to reduce spherical aberration of pseudophakic eyes. J Refract Surg. 2002; 18:683–91.
15. Olson RJ, Werner L, Mamalis N, Cionni R. New intraocular lens technology. Am J Ophthalmol. 2005; 140:709–16.
16. Caporossi A, Martone G, Casprini F, Rapisarda L. Prospective randomized study of clinical performance of 3 aspheric and 2 spherical intraocular lenses in 250 eyes. J Refract Surg. 2007; 23:639–48.
17. Mester U, Dillinger P, Anterist N. Impact of a modified optic design on visual function: clinical comparative study. J Cataract Refract Surg. 2003; 29:652–60.
18. Rocha K, Soriano E, Chalita M, et al. Wavefront Analysis and Contrast Sensitivity of Aspheric and Spherical Intraocular Lenses. Am J Opthalmol. 2006; 142:750–6.
19. Tzelikis P, Akaishi L, Trindade F, Boteon JE. Spherical Aberration and Contrast Sensitivity in Eyes Implanted with Aspheric and Spherical Intraocular Lenses: A Comparative Study. Am J Ophthalmol. 2008; 145:827–33.
20. Ahn H, Kim SW, Kim EK, Kim TI. Wavefront and Visual Function Analysis After Aspherical and Spherical Intraocular Lenses Implan-tation. J Korean Ophthalmol Soc. 2008; 49:1248–55.
21. Kim HS, Kim SW, Ha BJ, et al. Ocular Aberrations and Contrast Sensitivity in Eyes Implanted with Aspheric and Spherical Intraocular Lenses. J Korean Ophthalmol Soc. 2008; 49:1256–62.
22. Franchini A. Compromise between spherical and chromatic aberration and depth of focus in aspheric intraocular lenses. J Cataract Refract Surg. 2007; 33:497–509.
23. Altmann GE, Nichamin LD, Lane SS, Pepose JS. Optical performance of 3 intraocular lens designs in the presence of decentration. J Cataract Refract Surg. 2005; 31:574–85.
24. Holladay JT, Piers PA, Koranyi G, et al. A new intraocular lens design to reduce spherical aberration of pseudophakic eyes. J Refract Surg. 2002; 18:683–91.
25. Wang L, Dai E, Koch DD, Nathoo A. Optical aberrations of the human anterior cornea. J Cataract Refract Surg. 2003; 29:1514–21.
26. Beiko GH, Haigis W, Steinmueller A. Distribution of corneal spherical aberration in a comprehensive ophthalmology practice and whether keratometry can predict aberration values. J Cataract Refract Surg. 2007; 33:848–58.
27. Levy Y, Segal O, Avni I, Zadok D. Ocular higher-order aberrations in eyes with supernormal vision. Am J Ophthalmol. 2005; 139:225–8.
28. Tzelikis P, Akaishi L, Trindade F, Boteon J. Ocular aberrations and contrast sensitivity after cataract surgery with AcrySof IQ intraocular lens implantation. J Cataract Refract Surg. 2007; 33:1918–24.
29. Awwad ST, Lehmann JD, McCulley JP, Bowman RW. A comparison of higher order aberrations in eyes implanted with AcrySof IQ SN60WF and AcrySof SN60AT intraocular lenses. Eur J Ophthalmol. 2007; 17:320–6.
30. Johansson B, Sundelin S, Wikberg-Matsson A, et al. Visual and optical performance of the Akreos Adapt Advanced Optics and Tecnis Z9000 intraocular lenses: Swedish multicenter study. J Cataract Refract Surg. 2007; 33:1565–72.
31. Dietze HH, Cox MJ. Limitations of correcting spherical aberration with aspheric intraocular lenses. J Refract Surg. 2005; 21:S541–6.
32. Lee DY, Roh JH, Shyn KH. 2005 survey for KSCRS members. J Korean Ophthalmol Soc. 2007; 48:485–92.
Table 1.
Charateristics | Akreos adapt AO | AcrySof IQ SN60WF | Tecnis ZA9003 |
---|---|---|---|
Optic type | Monofocal | Monofocal | Monofocal |
Lens | 1-piece | 1-piece | 3-piece |
Optical material | Hydrophilic acrylic | Hydrophobic acrylic | Hydrophobic acrylic |
Refractive index | 1.458 | 1.55 | 1.47 |
Optic size (mm) | 6 | 6 | 6 |
Overall length (mm) | 10.5∼11.0 | 13 | 13 |
Design | Prolate anterior and posterior surfaces | Prolate posterior surface | Prolate anterior surface |
Haptic angulation | 0 | 0 | 5 |
Haptic material | Hydrophilic acrylic | Hydrophobic acrylic | PMMA† monofilament |
Sph A‡ (μm) | 0 | −0.20 | −0.27 |
Table 2.
Akreos adapt AO | AcrySof IQ SN60WF | Tecnis ZA9003 | p-value | |
---|---|---|---|---|
No* of eyes (%) | 18 | 20 | 18 | |
OD:OS | 9:9 | 10:10 | 9:9 | |
Gender (M:F) | 6:12 | 10:10 | 10:8 | |
Mean Age (± SD†) | 62.29 (±8.89) | 64.21 (±8.85) | 64.92 (±13.43) | 0.789 |
BCVA‡ (± SD) | −0.02 (±0.12) | 0.04 (±0.06) | 0.03 (±0.05) | 0.195 |
Table 3.
IOL groups | RMS* total | HO A† | Sph A‡ | Coma 7A | Coma 8A | Trefoil 6A | Trefoil 9A |
---|---|---|---|---|---|---|---|
AO | 1.46±0.38 | 0.80±0.33 | 0.26±0.20 | −0.09±0.24 | 0.12±0.31 | 0.12±0.29 | −0.04±0.28 |
IQ | 1.46±0.64 | 0.63±0.26 | 0.00±0.14 | 0.07±0.23 | 0.06±0.26 | 0.12±0.40 | −0.07±0.25 |
Tecnis | 1.09±0.39 | 0.56±0.21 | −0.01±0.13 | −0.01±0.23 | −0.02±0.23 | −0.09±0.29 | 0.07±0.21 |
p-value | 0.107 | 0.071 | 0.000§ | 0.143 | 0.385 | 0.198 | 0.351 |
Table 4.
IOL groups | RMS* total | HO A† | Sph A‡ | Coma 7A | Coma 8A | Trefoil 6A | Trefoil 9A |
---|---|---|---|---|---|---|---|
AO | 1.54±0.69 | 0.90±0.44 | −0.02±0.17 | −0.14±0.34 | 0.13±0.27 | 0.20±0.36 | −0.28±0.31 |
IQ | 1.69±0.70 | 0.80±0.40 | −0.22±0.16 | 0.06±0.28 | 0.05±0.22 | 0.16±0.44 | −0.08±0.27 |
Tecnis | 1.44±0.70 | 0.60±0.24 | −0.28±0.10 | −0.09±0.19 | 0.01±0.27 | 0.10±0.33 | −0.02±0.25 |
p-value | 0.605 | 0.134 | 0.000§ | 0.116 | 0.455 | 0.810 | 0.072 |