Journal List > J Korean Ophthalmol Soc > v.50(1) > 1008334

Yoon, Choi, Lee, Seong, Sung, and Kook: Evaluation of Glaucomatous Damage in the Fellow Eyes of Patients With Unilateral Retinal Vein Occlusion

Abstract

Purpose

To investigate the visual field (VF) and retinal nerve fiber layer (RNFL) status of the fellow eyes in patients with unilateral retinal vein occlusion (RVO).

Methods

Fifty patients with unilateral RVO and 35 normal control subjects wereconsecutively recruited. Humphrey VF parameters and RNFL status using scanning laser polarimetry with variable corneal compensation (GDx-VCC) were compared between the fellow eyes of the patients with unilateral RVO and control eyes. We also assessed the risk factors for the development of glaucomatous damage in the fellow eyes of unilateral RVO patients.

Results

Twelve fellow eyes out of 50 patients with unilateral RVO showed glaucomatous VF and RNFL changes assessed by GDx-VCC. VF indices and RNFL thickness parameters in the study group were significantly lower than those in the control group (p<0.05). Increased age and vertical cup-to-disc ratio were significantly associated with severity of VF and RNFL damage in the fellow eye of unilateral RVO patients (p<0.05).

Conclusions

The fellow eyes in patients with unilateral RVO showed significantly worse VF indices and lower RNFL thickness than normal control eyes. The glaucomatous change should be carefully monitored in the fellow eyes of unilateral RVO patients.

References

1. Krakau CE. Disk hemorrhages and retinal vein occlusions in glaucoma. Surv Ophthalmol. 1994; 38:S18–21.
crossref
2. Luntz MH, Schenker HI. Retinal vascular accidents in glaucoma and ocular hypertension. Surv Ophthalmol. 1980; 25:163–7.
crossref
3. Sonnsjö B, Krakau CE. Arguments for a vascular glaucoma etiology. Acta Ophthalmol. 1993; 71:433–44.
crossref
4. Rath EZ, Frank RN, Shin DH, Kim C. Risk factors for retinal vein occlusions. A case-control study. Ophthalmology. 1992; 99:509–14.
5. The Eye Disease Case-Control Study Group Risk factors for branch retinal vein occlusion. Am J Ophthalmol. 1993; 116:286–96.
6. The Eye Disease Case-Control Study Group Risk factors for central retinal vein occlusion. Arch Ophthalmol. 1996; 114:545–54.
7. Kim SJ, Park KH. Four cases of normal-tension glaucoma with disk hemorrhage combined with BRVO in the contralateral eye. Am J Ophthalmol. 2004; 137:357–9.
8. Hood DC, Thienprasiddhi P, Greenstein VC. . Detecting early to mild glaucomatous damage: a comparison of the multifocal VEP and automated perimetry. Invest Ophthalmol Vis Sci. 2004; 45:492–8.
crossref
9. Reus NJ, de Graaf M, Lemij HG. Accuracy of GDx VCC, HRT I, and clinical assessment of stereoscopic optic nerve head photographs for diagnosing glaucoma. Br J Ophthalmol. 2007; 91:313–8.
crossref
10. Oh SW, Ahn CS, Rhym MH. A clinical analysis on 186 cases of glaucoma. J Korean Ophthalmol Soc. 1970; 11:17–20.
11. Shin SG, Ahn JH, Rho SH. A clinical analysis on 456 cases of glaucoma among outpatients during 5 years. J Korean Ophthalmol Soc. 1987; 28:1021–6.
12. Song MS, Kim DG, Kim HJ. Clinical study on glaucomatous patients. J Korean Ophthalmol Soc. 1989; 30:755–9.
13. Song KH, Jin KH, Kim JM. Clincal data on glaucoma patients. J Korean Ophthalmol Soc. 1990; 31:1179–83.
14. Hwang IC, Jeong SK, Yang KJ. A clinical study on glaucoma. J Korean Ophthalmol Soc. 1992; 33:394–400.
15. Lee CK, Cho YJ, Hong YJ. Distribution of glaucoma in out-patient clinic. J Korean Ophthalmol Soc. 1995; 36:1020–7.
16. Lee CH, Jin GH, Kim DM. Clinical analysis on glaucoma. J Korean Ophthalmol Soc. 1998; 39:362–8.
17. Bonovas S, Peponis V, Filioussi K. Diabetes mellitus as a risk factor for primary open-angle glaucoma: a meta-analysis. Diabet Med. 2004; 21:609–14.
crossref
18. Ellis JD, Evans JM, Ruta DA. . Glaucoma incidence in an unselected cohort of diabetic patients: is diabetes mellitus a risk factor for glaucoma? DARTS/MEMO collaboration: Diabetes Audit and Research in Tayside Study. Medicines Monitoring Unit. Br J Ophthalmol. 2000; 84:1218–24.
19. Pasquale LR, Kang JH, Manson JE. . Prospective study of type 2 diabetes mellitus and risk of primary open-angle glaucoma in women. Ophthalmology. 2006; 113:1081–6.
crossref
20. Gordon MO, Beiser JA, Brandt JD. . The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002; 120:714–20.
21. Hulsman CA, Vingerling JR, Hofman A. . Blood pressure, arterial stiffness, and open-angle glaucoma: the Rotterdam study. Arch Ophthalmol. 2007; 125:805–12.
22. Hayreh SS, Zimmerman MB, Beri M, Podhajsky P. Intraocular pressure abnormalities associated with central and hemicentral retinal vein occlusion. Ophthalmology. 2004; 111:133–41.
crossref
23. Verhoeff FH. The effect of chronic glaucoma on the central retinal vessels. Arch Ophthalmol. 1913; 42:145–52.
24. Moore RF. Retinal venous thrombosis: a clinical study of sixty-two cases followed over many years. Br J Ophthalmol. 1924; 8:S1–90.
25. Duke-Elder S. Textbook of ophthalmology. Vol. 3. London: Kimpton;1936. p. 2584–5.
crossref
26. Becker B, Post LT Jr. Retinal vein occlusion. Clinical and experimental observations. Am J Ophthalmol. 1951; 34:677–86.
27. Soni KG, Woodhouse DF. Retinal vascular occlusion as a presenting feature of glaucoma simplex. Br J Ophthalmol. 1971; 55:192–5.
crossref
28. Hitchings RA, Spaeth GL. Chronic retinal vein occlusion in glaucoma. Br J Ophthalmol. 1976; 60:694–9.
crossref
29. Grunwald JE, Riva CE, Stone RA. . Retinal autoregulation in open-angle glaucoma. Ophthalmology. 1984; 91:1690–4.
crossref
30. Pillunat LE, Stodtmeister R, Wilmanns I, Christ T. Auto-regulation of ocular blood flow during changes in intraocular pressure. Preliminary results. Graefes Arch Clin Exp Ophthal-mol. 1985; 223:219–23.
31. Hayreh SS. Role of nocturnal arterial hypotension in the development of ocular manifestations of systemic arterial hypertension. Curr Opin Ophthalmol. 1999; 10:474–82.
crossref
32. Hayreh SS, Zimmerman MB, Podhajsky P, Alward WL. Nocturnal arterial hypotension and its role in optic nerve head and ocular ischemic disorders. Am J Ophthalmol. 1994; 117:603–24.
crossref
33. de Waard V, Arkenbout EK. Vos M. . TR3 nuclear orphan receptor prevents cyclic stretch-induced proliferation of venous smooth muscle cells. Am J Pathol. 2006; 168:2027–35.
crossref
34. Vikas Chopra, Rohit Varma. Brian A. . Type 2 diabetes mellitus and the risk of open-angle glaucoma the Los Angeles Latino Eye Study. Ophthalmology. 2008; 115:227–32.
35. Sofi F, Mannini L, Marcucci R. . Role of haemorheological factors in patients with retinal vein occlusion. Thromb Haemost. 2007; 98:1215–9.
crossref
36. Leoncini G, Bruzzese D, Signorello MG. . Platelet activation by collagen is increased in retinal vein occlusion. Thromb Haemost. 2007; 97:218–27.
crossref
37. Klaver JHJ, Greve EL, Goslinga H. . Blood and plasma viscosity measurements in patients with glaucoma. Br J Ophthalmol. 1985; 69:765.
crossref
38. Drance SM, Sweeney VP, Morgan RW. . Studies of factors involved in the production of low tension glaucoma. Arch Ophthalmol. 1973; 89:457.
crossref
39. Crichton A, Drance SM, Douglas GR, Schulzer M. Unequal intraocular pressure and its relation to asymmetric visual field defects in low tension glaucoma. Ophthalmology. 1989; 96:1312–4.
40. Choi J, Kim KH, Jeong J. . Circadian fluctuation of mean ocular perfusion pressure is a consistent risk factor for normal- tension glaucoma. Invest Ophthalmol Vis Sci. 2007; 48:104–11.
41. Plange N, Remky A, Arend O. Absolute filling defects of the optic disc in fluorescein angiograms inglaucoma--a retro- spective clinical study. Klin Monatsbl Augenheilkd. 2001; 218:214–21.
42. Pollack A, Dottan S, Oliver M. The fellow eye in retinal vein occlusive disease. Ophthalmology. 1989; 96:842–5.
crossref
43. Beaumont PE, Kang HK. Cup-to-disc ratio, intraocular pressure, and primary open-angle glaucoma in retinal venous occlusion. Ophthalmology. 2002; 109:282–6.

Figure 1.
Comparison of visual field indices of the fellow eyes of branch retinal vein occlusion (BRVO) patients, the fellow eyes of central retinal vein occlusion (CRVO) patients and controls; MD=mean deviation; PSD=pattern standard deviation; BRVO=branch retinal vein occlusion; CRVO=central retinal vein * Statistical significance was found with occlusion; unpaired t-test (p<0.001).
jkos-50-120f1.tif
Figure 2.
Global and sectoral RNFL retardation values based on GDx-VCC of the fellow eyes of branch retinal vein occlusion (BRVO) patients, the fellow eyes of central retinal vein occlusion (CRVO) patients and controls; TSNIT=temporal, superior, nasal, inferior and temporal AV=average; SD=standard deviation; BRVO= branch retinal vein occlusion; CRVO=central retinal vein occlusion; * Statistical significance was found with unpaired t-test (p<0.001).
jkos-50-120f2.tif
Table 1.
Demographics and clinical characteristics of participant
BRVO patients (n=26) CRVO patients (n=24) Controls (n=35) p-value
Age (year, mean± SD) 59.9±9.9 56.8±18.3 55.9±7.9 0.442§
Gender (male:female) 12:14 14:10 14:21 0.380
Hypertension (n) 11 12 10 0.229
Diabetes mellitus (n) 6 5 5 0.656
RVO duration (week) Range of RVO duration (week) 71 2-286 1025-312 n/a∗∗ n/a 0.198††

BRVO=branch retinal vein occlusion

CRVO=central retinal vein occlusion

SD=standard deviation

§ One-way ANOVA testamong three groups (p>0.05)

Chi-square test among three groups (p>0.05)

RVO duration=time after retinal vein occlusion occurrence

∗∗ n/a=no account

†† Unpaired t-test between BRVO fellow eye and CRVO fellow eye (p>0.05)

Table 2.
Comparison of clinical characteristics, visual field indices and GDx-VCC parameters between the fellow eyes of retinal vein occlusion (RVO) patients and control (mean± standard deviation)
RVO fellow eye (n=50) Control (n=35) p-value
BCVA (logMAR) RE§ (diopter) 0.15±0.21-0.38±1.74 0.09±0.12-0.13±1.22 0.0910.463
IOP (mmHg) 16.4±4.1 15.1±3.8 0.148
Vertical C/D ratio 0.71±0.19 0.35±0.11 <0.001
Visual field indices
MD∗∗ (dB††) -6.7±8.5 -1.0±1.6 <0.001
PSD‡‡ (dB) 4.6±3.8 1.9±0.5 <0.001
Global and sectoral RNFL retardation values
TSNIT§§ average (µm) 48.2±11.2 59.4±5.3 <0.001
Superior average (µm) 56.9±13.1 72.4±9.0 <0.001
Inferior average (µm) 53.9±13.0 68.7±8.5 <0.001
TSNIT SD∏∏ (µm) 16.5±5.4 22.8±5.3 <0.001

RVO=retinal vein occlusion

Unpaired t-test (statistical significance: p<0.05)

BCVA=best corrected visual acuity

§ RE= refractive error

IOP=intraocular pressure

Vertical C/D ratio=vertical cup to disc ratio

∗∗ MD=mean deviation

†† dB=decibel

‡‡ PSD=pattern standard deviation

§§ TSNIT=temporal, superior, nasal, inferior and temporal

∏∏ SD=standard deviation.

Table 3.
Comparison of clinical characteristics, visual field indices and GDx-VCC parameters among the fellow eyes of branch retinal vein occlusion (BRVO) patients, the fellow eyes of central retinal vein occlusion (CRVO) patients and control (mean± standard deviation)
BRVO fellow eye (n=26) CRVO fellow eye (n=24) Control (n=35) p-value
BCVA§ (logMAR) RE (diopter) 0.13±0.14-0.03±1.41 0.17±0.30-0.81±2.03 0.09±0.12-0.13±1.15 0.1430.758
IOP (mmHg) 16.9±3.6 15.9±4.6 15.1±3.8 0.230
Vertical C/D ratio∗∗ 0.78±0.13 0.59±0.22 0.35±0.11 <0.001
Visual field indices
MD†† (dB‡‡) -6.7±8.4 -6.8±8.6 -1.0±1.6 0.001
PSD§§ (dB) 4.7±3.7 4.5±4.2 1.9±0.5 <0.001
Global and sectoral RNFL retardation values
TSNIT∏∏ average (µm) 45.8±8.7 50.7±13.0 59.4±5.3 <0.001
Superior average (µm) 55.0±11.8 59.0±14.3 72.4±9.0 <0.001
Inferior average (µm) 51.7±11.1 56.3±14.7 68.7±8.5 <0.001
TSNIT SD## (µm) 15.9±5.1 17.2±5.7 22.8±5.3 <0.001

BRVO=branch retinal vein occlusion

CRVO=central retinal vein occlusion

One-way ANOVA test among three groups (statistical significance: p<0.05)

§ BCVA=best corrected visual acuity

RE=Refractive error

IOP=intraocular pressure

∗∗ Vertical C/D ratio=vertical cup to disc ratio

†† MD=mean deviation

‡‡ dB=decibel

§§ PSD=pattern standard deviation

∏∏ TSNIT=temporal, superior, nasal, inferior and temporal

## SD=standard deviation

Table 4.
Number of eyes with glaucomatous visual field defect and NFI≥40 on GDx VCC in each group
BRVO fellow eye CRVO fellow eye Control
(n=26) (n=24) (n=35)
G-VFD(%) 10 (30.8%)§ 9 (37.5%)§ 0 (0%)
NFI ≥ 40 (%) 8 (30.8%)§ 6 (25.0%)§ 0 (0%)
G-VFD or NFI ≥ 40 (%) 14 (53.8%)§ 12 (50.0%)§ 0 (0%)
G-VFD and NFI ≥ 40 (%) 7 (26.9%)§ 5 (20.8%)§ 0 (0%)

BRVO=branch retinal vein occlusion

CRVO=central retinal vein occlusion

G-VFD=glaucomatous visual field defect- Glaucoma Hemifield Test (GHT) outside 99% of age-specific normal limits or pattern standard deviation (PSD) outside 95% of normal limits

§ There were significant differences in glaucomatous visual field defectsand number of eyes with an NFI of ≥40 between RVO patients and controls (Chi-square test, p<0.001)

NFI=nerve fiber indicator.

Table 5.
Correlation of risk factors for glaucoma with functional and structural glaucomatous damage in the fellow eyes of retinal vein occlusion patients
MD PSD TSNIT average Superior average Inferior average TSNIT SD§
Age (year) p-value 0.025 0.125 0.013 <0.001 0.001 <0.001
R -0.319 0.222 -0.347 -0.485 -0.442 -0.572
IOP∗∗ p-value 0.615 0.865 0.645 0.564 0.764 0.701
(mm Hg) R -0.074 -0.025 -0.067 -0.084 -0.044 -0.056
Vertical C/D p-value 0.027 0.605 0.036 0.012 0.063 0.010
ratio†† R -0.369 0.089 -0.351 -0.416 -0.313 -0.424
RVO onset‡‡ p-value 0.546 0.533 0.342 0.306 0.277 0.552
(week) R 0.089 -0.092 -0.139 -0.149 -0.158 -0.087

MD=mean deviation

PSD=pattern standard deviation

TSNIT=temporal, superior, nasal, inferior and temporal

§ SD= standard deviation

Statistical significance was found using Pearson’s correlation analysis (p<0.05).

R=Pearson’s correlation coefficient

∗∗ IOP=intraocular pressure;

†† Vertical C/D ratio=vertical cup to disc ratio

‡‡ RVO onset=time after retinal vein occlusion occurrence.

TOOLS
Similar articles