Journal List > J Korean Ophthalmol Soc > v.49(2) > 1008178

Choi, Choi, and Her: Two-year Endothalial Changes after Iris Fixed Phakic Intraocular Lens Implantation in Korean

Abstract

Purpose

To investigate quantitative and morphometric endothelial changes in phakic eyes implanted with an iris-fixed phakic intraocular lens in Korean patients.

Methods

We prospectively examined the endothelial cell density (ECD), ECD loss (ECL), coefficient variations (CV), and frequency of Hexagons (6A) in 46 phakic eyes implanted with an iris-fixed phakic intraocular lens. The effect of anterior chamber depth (ACD) and diopter of iris-fixed phakic intraocular lens on ECD was statistically analyzed.

Results

Preoperative mean ECD was 2923±257 cells/mm2. ECL at postoperative 1, 3, 6, 12, and 24 monthswas 0.71%, 0.88%, 0.70%, 0.64%, and 2.34%. It was significant only in the month 24 results. The mean CV value at the same time was 0.343, 0.342, 0.334, 0.329, 0.326, and 0.338. The change was significant at the 12th month. The mean 6A value at the same time was 58.2%, 57.8%, 59.7%, 59.6%, 60.1%, and 58.8%. There was no significant change in 6A value. Preoperative ACD and diopter of iris-fixed phakic intraocular lens didn't affect the ECD change.

Conclusions

This two-year follow-up study of changes in endothelial cells after implantation iris-fixated phakic intraocular lens showed statistically significant decreases in the cells, which is not very significant considering the physiologic reduction rate of the cells. Thses decreases showed a tendency to be stabilized with recovery of morphological changes. Further long-term follow-up is needed to determine its long-lasting effect.

References

1. Heitzmann J, Binder PS, Kassar BS, Nordan LT. The correction of high myopia using excimer laser. Arch Ophthalmol. 1993; 111:1627–34.
2. Kim TG, Joo CK. 2 cases of corneal ectasia detected after LASIK. J Korean Ophthalmol Soc. 1999; 40:846–9.
3. Geggel HS, Talley AR. Delayed onset keratectasia following laser in situkeratomileusis. J Cataract Refract Surg. 1999; 25:582–6.
4. Holladay JT, Dudeja KR, Chang J. Functional vision and corneal changes after laser in situkeratomileusis determined by contrast sensitivity, glare test and corneal topography. J Cataract Refract Surg. 1999; 25:663–9.
5. Fechner PU. Iris claw lens (German). Klin Monatsbl Augenheilkd. 1987; 191:26–9.
6. Fechner PU, Worst JF. A new concave intraocular lens for the correction of high myopia. European Journal of Implant and Refractive Surgery. 1989; 1:41–3.
7. Fechner PU, Strobel J, Wichmann W. Correction of myopia by implantation of a concave Worst-iris claw lens into phakic eyes. Refract Corneal Surg. 1991; 7:286–98.
crossref
8. Landesz M, Worst JG, Siertsema JV, van Rij G. Correction of high myopia with the Worst myopia claw intraocular lens. J Refract Surg. 1995; 11:16–25.
crossref
9. Izak MG, Izak A. Inflammatory reaction associated to Artisan phakic refractive IOL implantation. Budo CJR, editor. The ARTISAN Lens. 1st ed.Panama: Highlights of Ophthalmology;2004. 1:chap. 14.
10. Maloney RK, Nguyen LH, John ME. Artisan phakic intraocular lens for myopia. Short-term results of a prospective, multicenter study. Ophthalmology. 2002; 109:1631–41.
crossref
11. Sanders DR, Doney K, Poco M, et al. United States food and drug administration clinical trial of the implatable collamer lens(ICL) for moderate to high myopia. Three-year follow-up. Ophthalmology. 2004; 111:1683–92.
12. Sarikkola AU, Sen HN, Uusitalo RJ, Laatikainen L. Traumatic cataract and other adverse events with implantable contact lens. J Cataract Refract Surg. 2005; 31:511–24.
13. Assetto V, Benedetti S, Pesando P. Collamer intraocular contact lens to correct high myopia. J Cataract Refract Surg. 1996; 22:551–6.
crossref
14. Smallman D, Probst L, Rafuse PE. Pupillary block glaucoma secondary to posterior chamber phakicintraocular lens implantation for high myopia. J Cataract Refract Surg. 2004; 30:905–7.
15. Kodjikian L, Gain P, Donate D, et al. Malignant glaucoma induced by a phakic posterior chamber intraocular lens for myopia. J Cataract Refract Surg. 2002; 28:2217–21.
crossref
16. Perez-Santonja JJ, Iradier MT, Sanz-Iglesias L, et al. Endothelial changes in phakic eyes with anterior chamber intraocular lenses to correct high myopia. J Cataract Refract Surg. 1996; 22:1017–22.
17. de Souza RF, Forseto A, Nose R. Anterior chamber intraocular lens for high myopia: five year results. J Cataract Refract Surg. 2001; 27:1248–53.
18. Alio JL, de la Hoz F, Perez-Santonja JJ, et al. Phakic anterior chamber lenses for the correction of myopia: a 7-year cumulative analysis of complications in 263 cases. Ophthalmology. 1999; 106:458–66.
19. Perez-Santonja JJ, Alio JL, Jimenez-Alfaro I, Zato MA. Surgical correction of severe myopia with an angle-supported phakic intraocular lens. J Cataract Refract Surg. 2000; 26:1288–302.
20. Asano-Kato N, Toda I, Hori-Komai Y, et al. Experience with the Artisan phakic intraocular lens in Asian eyes. J Cataract Refract Surg. 2005; 31:910–5.
crossref
21. Landesz M, van Rij G, Luyten G. Iris-claw phakic intraocular lens for high myopia. J Refract Surg. 2001; 17:634–40.
crossref
22. Benedetti S, Casamenti V, Marcaccio L, et al. Correction of myopia of 7 to 24 diopters with the Artisan phakic intraocular lens: two-year follow-up. J Refract Surg. 2005; 21:116–26.
crossref
23. Kim HC, Lee SY, Shim CB. The clinical results of iris-fixated phakic IOL. J Korean Ophthalmol Soc. 2005; 46:353–9.
24. Benedetti S, Casamenti V, Benedetti M. Long-term endothelial changes in phakiceyes after Artisan intraocular lens implantation to correct myopia Five-year study. J Cataract Refract Surg. 2007; 33:784–90.
25. Menezo JL, Cisneros AL, Salvador VR. Endothelial study of iris-claw phakic lens: Four year follow-up. J Cataract Refract Surg. 1998; 24:1039–49.
crossref
26. Lee ES, Cho YJ, Kim EK. Short-term changes in corneal endothelium after iris-fixated phakic intraocular lens insertion. J Korean Ophthalmol Soc. 2005; 46:410–5.
27. Budo CJR. Manufacture. Budo CJR, editor. The ARTISAN Lens. 1st ed.Panama: Highlights of Ophthalmology;2004. 1:chap. 22.
28. Pop M, Payette Y. Initial results of endothelial cell counts after Artisan lens for phakic eyes. An evaluation of the united states food and drug administration Ophtec study. Ophthalmology. 2004; 111:309–17.
29. Tahzib NG, Nuijts RM, Wu WY, Budo CJ. Long-term Study of Artisan Phakic Intraocular Lens Implantation for the Correction of Moderate to High Myopia. Ophthalmology. 2007; 114:1133–42.
crossref
30. Bourne WM, Nelson LR, Hodge DO. Central corneal endothelial cell changes over a ten-year period. Invest Ophthalmol Vis Sci. 1997; 38:779–82.
31. Waring GO III, Bourne WM, Edelhauser HF, Kenyon KR. The corneal endothelium; normal and pathologic structure and function. Ophthalmology. 1982; 89:531–90.
32. Odenthal MTP, Gan IM, Oosting J, et al. Long-term changes in corneal endothelial morphology after discontinuation of low gas-permeable contact lens wear. Cornea. 2005; 24:32–8.
crossref
33. Ohno K, Nelson LR, McLaren JW, et al. Comparison of recording systems and analysis methods in specular microscopy. Cornea. 1999; 18:416–23.
crossref
34. Doughty MJ, Mller A, Zaman ML. Assessment of the reliability of human corneal endothelial cell density estimates using a non contact specular microscope. Cornea. 2000; 19:148–58.

Figure 1.
Diagram of the 6-mm Artisan lens (Ophtec BV, Groningen, Netherlands) with relevant dimensions. The haptics lie in the pupillary planes, whereas the optic vaults anterior to the pupil to prevent iris chafing.
jkos-49-230f1.tif
Figure 2.
Critical distance (S). At least, more than 1 mmis recommended for preventing iris rubbing or IOL movement.
jkos-49-230f2.tif
Figure 3.
Center method in calculating endothelial cell density. After 100 cell dotting, endothelial cell density is calculated automatically.
jkos-49-230f3.tif
Figure 4.
Endothelial cell density changes at two-year follow-up.
jkos-49-230f4.tif
Figure 5.
Morphologic changes in coefficient variation (CV) and frequency (6A) of hexagons (%) at two-year follow-up.
jkos-49-230f5.tif
Figure 6.
Scatter plot showing the relationship between anterior chamber depth (ACD) and endothelial cell density chage (ECD change) after 24months and between diopter of intraocular lens (IOL) and endothelial cell density change (ECD change) after 24 months.
jkos-49-230f6.tif
Table 1.
Patient characteristics
Measurement (n=46) Mean±SD Range
Coefficient variation (%) 34.32±3.95 26.0∼46.0
Hexagonal frequency (%) 58.22±8.66 30.7∼66.8
ACD (mm) 3.77±0.21 3.20∼4.16
IOL power (D) −11.18±3.81 −5.0∼-22.0
Critical Distance (mm) 1.72±0.17 1.13∼2.02

ACD=anterior chamber depth; IOL=intraocular lens; D=diopters; SD=standard deviation.

Table 2.
Endothelial cell density (ECD) changes
  ECD Changes from Baseline (%) P-value
Pre-operation 2923±257    
1st month 2885±312 −0.71 0.453
3rd month 2888±260 −0.88 0.320
6th month 2908±275 −0.70 0.239
12th month 2921±296 −0.64 0.474
24th month 2854±254 −2.34 0.004*

* P<0.05.

Table 3.
Morphologic changes of endothelial cells; Coefficient variation (CV) in cell area
  CV Changes from Baseline (%) P-value
1st month 0.342±0.034 0.11 0.945
3rd month 0.334±0.032 −0.33 0.880
6th month 0.329±0.040 −3.83 0.091
12th month 0.326±0.031 −4.94 0.005*
24th month 0.338±0.043 −1.58 0.453

* P<0.05.

Table 4.
Morphologic changes of endothelial cells; Frequency of hexagons (6A)
  6A (%) Changes from Baseline (%) P-value
1st month 57.8±7.8 −0.7 0.647
3rd month 59.7±9.2 +2.26 0.330
6th month 59.6±8.1 +1.97 0.336
12th month 60.1±6.6 +0.91 0.663
24th month 58.8±8.1 +0.93 0.600
TOOLS
Similar articles