Journal List > J Korean Ophthalmol Soc > v.49(11) > 1008137

Sung, Sang, Seung, and Song: Correlation of OCT and Hemifield Pattern VEP in Hemianopia

Abstract

Purpose

To analyze the correlation between RNFL thickness changes measured by OCT and hemifield pattern VEP in hemianopic visual field loss.

Methods

Twelve eyes of six patients with hemianopia were studied. Two patients had bitemporal hemianopia caused by chiasmal tumor, one patient had inferior hemianopia caused by traumatic optic neuropathy, and three patients had homonymous hemianopia caused by occipital lobe lesions. The retinal nerve fiber layer thickness around the optic disc was measured by optical coherence tomography (OCT) and visual pattern evoked potentials were measured using hemifield stimulations.

Results

Normal eyes of traumatic optic neuropathy patients were excluded from the analysis. The retinal nerve fiber layer thickness as measured by OCT corresponded to the visual field defect in 9 of 11 eyes (81.8%) and the hemifield pattern VEP response corresponded to visual field defect in 7 of 11 eyes (63.6%).

Conclusions

RNFL thickness measurement by OCT and hemifield PVEP are useful in evaluation of patients with hemianopia. However, they should be performed with caution, and compared with various clinical examinations because of their incomplete correlation with visual field defects.

References

1. Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science. 1991; 54:1178–81.
crossref
2. Schuman JS, Hee MR, Arya AV, et al. Optical coherence tomography : a new tool for glaucoma diagnosis. Curr Opin Ophthalmol. 1995; 6:89–95.
3. Schuman JS, Pedut-Kloizman T, Hertzmark E, et al. Reprodu- cibility of nerve fiber layer thickness measurements using optical coherence tomography. Ophthalmology. 1996; 103:1889–98.
4. Blumenthal EZ, Williams JM, Weinreb RN, et al. Reproducibility of nerve fiber layer thickness measurements by use of optical coherence tomography. Ophthalmology. 2000; 2278–82.
5. Carpineto P, Ciancaglini M, Zuppardi E, et al. Reliability of nerve fiber layer thickenss measurements using optical coherence tomography in normal and glaucomatous eyes. Ophthalmology. 2003; 110:190–5.
6. Kanamori A, Nakamura M, Escano MF, et al. Evaluation of the glaucomatous damage on retinal nerve fiber layer thickness measured by optical coherence tomography. Am J Ophthalmol. 2003; 135:513–20.
crossref
7. Bowd C, Weinreb RN, Williams JM, Zangwill LM. The retinal nerve fiber layer thickness in ocular hypertensive, normal, and glaucomatous eyes with optical coherence tomography. Arch Ophthalmol. 2000; 118:22–6.
crossref
8. Soliman MA, Van Den Berg TJ, Ismaeil AA, et al. Retinal nerve fiber layer analysis: relationship between optical coherence tomography and red-free photography. Am J Ophthalmol. 2002; 133:187–95.
crossref
9. Zangwill LM, Williams J, Berry CC, et al. A comparison of optical coherence tomography and retinal nerve fiber layer photography for detection of nerve fiber layer damage in glaucoma. Ophthalmology. 2000; 107:1309–15.
crossref
10. Kanamori A, Nakamura M, Matsui N, et al. Optical coherence tomography detects characteristic retinal nerve fibre layer thickness corresponding to band atrophy of the optic discs. Ophthalmology. 2004; 111:2278–83.
11. Mehta JS, Plant GT. Optical coherence tomography (OCT) findings in congenital/longstanding homonymous hemianopia. Am J Ophthalmol. 2005; 140:727–9.
crossref
12. Monteiro ML, Leal BC, Rosa AA, Bronstein MD. Optical coherence tomography analysis of axonal loss in band atrophy of the optic nerve. Br J Ophthalmol. 2004; 88:896–9.
crossref
13. Moteiro ML, Moura FC, Medeiros FA. Diagnostic ability of optical coherence tomography with a normative database to detect band atrophy of the optic nerve. Am J Ophthalmol. 2007; 143:896–9.
14. American Clinial Neurophysiology Society. Guideline 9B: Guidelines on Visual Evoked Potentials. J Clin Neurophysiol. 2006; 23:138–56.
15. Miller NR, Newman NJ. Walsh and Hoyt’s Clinical Neuro- ophthalmology, 5th ed. Vol. 1. Baltimore: Williams & Wilkins;1998; 307–22.
16. Hoyt WF, Luis O. The primate chiasm. Details of visual fiber organization studied by silver impregnation techniques. Arch Ophthalmol. 1963; 70:69–85.
crossref
17. Miller NR, Newman NJ. Walsh and Hoyt’s Clinical Neuro- ophthalmology, 5th ed. Vol. 1. Baltimore: Williams & Wilkins;1998; 50–3.
18. Brecelj J. A VEP study of the visual pathway function in compressive lesions of the optic chiasm. Full-field versus half-field stimulation. Electroencephalogra Clin Neurophysiol. 1992; 84:209–18.
19. Flanagan JG, Harding GF. Multi-channel visual evoked potentials in early compressive lesions of the chiasm. Doc Ophthalmol. 1988; 69:271–81.
crossref
20. Bumgartner J, Epstein CM. Voluntary alteration of visual evoked potentials. Ann Neurol. 1982; 12:475–8.
crossref
21. Morgan RK, Nugent B, Harrison JM, O’Connor PS. Voluntary alternation of pattern visual evoked responses. Ophthalmology. 1985; 92:1356–63.
22. Thompson HS. Functional visual loss. Am J Ophthalmol. 1985; 100:209–13.
crossref

Figure 1.
The position of hemifield pattern visual evoked potentials electrode.
jkos-49-1819f1.tif
Figure 2.
Examination technique of hemifield pattern visual evoked potentials. (A, B, C)=electrode (D, E)=hemifield stimulation.
jkos-49-1819f2.tif
Figure 3.
4 channels of hemifield pattern visual evoked potentials.
jkos-49-1819f3.tif
Figure 4.
Brain MRI of a 25-year-old woman who had bitemporal hemianopia (Case 1). (A) 3.5×3.8×2.3 cm-sized lesion with enhancement was identified in suprasellar area (blue arrows). (A) axial scan (B) coronal scan.
jkos-49-1819f4.tif
Figure 5.
Case 1. Visual field by Humphrey perimetry (A, B) shows bitemporal hemianopia. Retinal nerve fiber layer thickness measured by optical coherence tomography shows thinning in mainly temporal and nasal areas in both eyes. (correspond to temporal hemianopia)
jkos-49-1819f5.tif
Figure 6.
Hemifield pattern visual evoked potentials results of the Case 1 patient. The results of both eyes correspond to temporal hemianopia.
jkos-49-1819f6.tif
Figure 7.
Brain MRI of 62 years old man who had right homonymous hemianopia (Case 2). Acute infarction in the left posterior cerebral artery territory was identified (Blue arrows). (A) T2 Weighted image (B) diffusion view.
jkos-49-1819f7.tif
Figure 8.
Visual field by Goldmann perimetry (A, B) and retinal nerve fiber layer thickness measured by Optical coherence tomography (C) of Case 2 patient. Right homonymous hemianopia and normal RNFL thickness were identified.
jkos-49-1819f8.tif
Figure 9.
Hemifield pattern visual evoked potentials of Case 2 patient. At right hemifield stimulation ‘delayed latency’ was identified in both eyes. But at left hemifield stimulation normal latency was identified in both eyes. Monocular P100 latency, amplitude difference were significant in both of eyes (latency difference > 9 ms, amplitude difference > 1 µV). So the results of the right eye correspond to temporal hemianopia, and the results of left eye correspond to nasal hemianopia.
jkos-49-1819f9.tif
Table 1.
Demographic characteristics of patients
Patient Age (years) Gender BCVA* Diagnosis Visual field defect (hemianopia)
1 36 F OD) 0.9 OS) LP(+) Pituitary adenoma Bitemporal
2 25 F OU) 1.0 Craniopharyngioma Bitemporal
3 37 F OD) 0.2 OS) 0.16 Left occipital lesion by head trauma Right homonymous
4 38 M OD) 0.1 OS) 1.0 Traumatic optic neuropathy Right inferior
5 62 M OD) 0.63 OD) 0.5 Acute left PCA infarction Right homonymous
6 45 F OD) 0.5 OS) 0.32 Diffuse axonal injury by head trauma Right homonymous

* BCVA=best corrected visual acuity.

Table 2.
Pattern evoked potentials normative data of our laboratory (60 normal subjects)
Sex Decades (Mean±SD)
2nd 3rd 4th 5th 6th 7th
Mean age (y) M 16.8 26.2 33.4 43.8 54.1 63.4
F 17.3 25.3 35.2 44.2 53.8 62.7
Latency of P100 (msec) M 95.8±3.4 94.8 ±4.1 92.7 ±2.8 94.3 ±4.5 96.8 ±3.7 90.8 ±4.7
F 96.9±4.2 93.7 ±3.7 94.6 ±3.8 95.7 ±4.9 92.7 ±3.6 93.2 ±3.7
Interocular hemifield P100 M 2.2±1.5 1.8±1.2 1.9±0.8 2.4±1.7 1.8±1.1 1.6±1.3
latency difference (msec) F 2.5±1.9 2.3±1.8 2.0±1.3 1.9±1.6 2.1±1.6 2.0±1.3
Monocular hemifield P100 M 1.9±1.2 2.2±1.6 1.9±1.1 2.2±1.0 2.0±0.9 2.2±0.7
latency difference (msec) F 2.3±1.3 2.7±1.6 1.8±0.8 2.3±1.7 2.3±1.2 1.3±0.9
Table 3.
Retinal nerve fiber layer thickness measured by optical coherence tomography
Thickness of RNFL (µm)
Eye Average Quadrants Clock hours
Sup.* T Temp. Inf. Nas.§ 1 2 3 4 5 6 7 8 9 10 11 12
Nas. Inf. Temp. Sup.
Temp. Temp.
1 64.83 81 34 103 42 44 46 45 35 79 146 84 30 30 41 89 109
2 48.14 53 43 58 40 46 43 39 36 40 81 53 35 46 47 49 63
3 85.95 116 57 121 50 85 67 40 43 86 161 116 37 44 91 152 110
4 83.29 119 51 118 45 80 63 34 38 71 129 155 51 26 77 137 141
5 69.75 92 48 103 36 60 30 29 49 74 134 100 36 37 71 129 88
6 64.50 78 50 81 49 108 70 38 39 78 85 81 57 48 44 47 79
7 53.91 38 30 109 38 32 33 33 49 118 127 84 34 28 29 40 41
8 105.39 123 73 153 72 122 80 53 82 138 170 152 70 67 83 132 115
9 99.28 112 70 123 92 88 111 88 76 97 114 159 80 48 84 118 129
10 98.18 115 71 121 86 116 114 71 74 105 117 140 63 57 93 99 129
11 75.28 100 37 113 50 65 39 49 62 79 152 109 30 28 54 106 129
12 94.66 98 59 106 116 134 136 106 106 126 116 76 64 65 47 63 97

* Sup=Superior

Temp=Temporal

Inf=Inferior

§ Nas=Nasal.

Table 4.
Retinal nerve fiber layer thickness measured by optical coherence and correspondence to visual field defect
Eye Period* Visual field defect RNFL thickness measured by OCT Correspondance to VF§ defect
1 72 months Temporal hemianopia Temporal, nasal RNFL thinning Yes
2 72 months Temporal hemianopia Superior, temporal, inferior, nasal RNFL thinning Yes
3 7 months Temporal hemianopia Temporal, nasal RNFL thinning Yes
4 7 months Temporal hemianopia Temporal, nasal RNFL thinning Yes
5 9 months Temporal hemianopia Superior, temporal, nasal RNFL thinning Yes
6 9 months Nasal hemianopia Superior, inferior RNFL thinning Yes
7 8 months Inerior hemianopia Superior, temporal, nasal RNFL thinning Yes
8 8 months No field defect No thinning Normal eye
9 1 week Temporal hemianopia No thinning No
10 1 week Nasal hemianopia No thinning No
11 36 months Temporal hemianopia Temporal, nasal RNFL thinning Yes
12 36 months Nasal hemianopia Superior, inferior RNFL thinning Yes

* Period=time to OCT performance after initial diagnosis or trauma

RNFL=retinal neve fiber layer

OCT=optical coherence tomography

§ VF=visual field.

Table 5.
The results of hemifield pattern visual evoked potentials and correspondence to visual field defect
Eye OD /OS VF defect Right. Hemifie eld stimulation Left. Hemifield stimulation Mono-diff Correspondance to VF defect
P100 latency Inter-diff* P100 latency Inter-diff
1 OD TH Delayed latency Delayed latency Latency: sig§ Amplitude: sig Yes
2 OS TH P1 destruction No response No
3 OD TH P1 destruction Normal Yes
4 OS TH Normal P1 destruction Yse
5 OD TH P1 destruction P1 destruction No
6 OS NH P1 destruction P1 destruction No
7 OD IH# P1 destruction P1 destruction Yes
8 OS Normal Normal Normal Latency: not sig Amplitude:not sig Normal eye
9 OD TH Delayed latency Latency: not sig Normal Latency: not sig Latency: sig Amplitude: sig Yes
10 OS NH Delayed latency Amplitude: not sig Normal Amplitude:not sig Latency: sig Amplitude: sig Yes
11 OD TH Normal Latency: not sig Normal Latency: not sig Latency: sig Amplitude:sig Yes
12 OS NH Normal Amplitude: not sig Normal Amplitude: not sig Latency: not sig Amplitude: not sig No

* Interocular hemifield P100 difference

Monocular hemifield P100 difference

Temporal hemianopia

§ Significant

Π Nasal hemianopia

# Inferior hemianopia.

TOOLS
Similar articles