Journal List > J Korean Ophthalmol Soc > v.49(9) > 1008071

Yi, Ha, Kim, Kim, and Kim: The Number of Cases, Cause and Treatment of Avellino Corneal Dystrophy Exacerbated After LASIK

Abstract

Purpose

To describe the number of cases and cause of Avellino corneal dystrophy (ACD) exacerbated after LASIK (laser in situ keratomileusis), to study the possible mechanism of exacerbation, and to suggest possible preventive measures and the most suitable treatment modality.

Methods

Twenty-eight (56 eyes) ACD patients who underwent LASIK were enrolled, and 24 parameters including pre-and post-operative best corrected visual acuity, contrast sensitivity, and corneal opacity were analyzed. To evaluate the effect of treatment modality for exacerbated cases after LASIK, the progression of corneal opacity, visual acuity, and contrast sensitivity were compared between the two surgical methods (mechanical removal from LASIK interface with removal of surgical flap and deep lamellar keratoplasty (DLKP)).

Results

All patients showed progression of corneal opacities after LASIK regardless of the type of laser instruments, microkeratomes, or the size or thickness of the LASIK flap. As for treatment of exacerbated ACD patients after LASIK, DLKP showed better results than mechanical removal from the LASIK interface after removal of the surgical flap.

Conclusions

LASIK is contraindicated in any patient with ACD. DLKP could be a good treatment modality for ACD patients with exacerbated conditions after LASIK.

References

1. Holland EJ, Daya SM, Stone EM. . Avellino corneal dystrophy. Clinical manifestations and natural history. Ophthalmology. 1992; 99:1564–8.
2. Kennedy SM, McNamara M, Hillery M. . Combined granular lattice dystrophy (Avellino corneal dystrophy). Br J Ophthalmol. 1996; 80:489–90.
crossref
3. Dolmetsch AM, Stockl FA, Folberg R. . Combined granular-lattice corneal dystrophy (Avellino) in a patient with no known Italian ancestry. Can J Ophthalmol. 1996; 31:29–31.
4. Kocak-Atlintas AG, Kocak-Midillioglu I, Akarsu AN, Duman S. BIGH3 gene analysis in the different diagnosis of corneal dystrophies. Cornea. 2001; 20:64–8.
5. Klintworth GK. Advances in the molecular genetics of corneal dystrophies. Am J Ophthalmol. 1999; 128:747–54.
crossref
6. Konishi M, Mashima Y, Nakamura Y. . Granular-lattice (Avellino) corneal dystrophy in Japanese patients. Cornea. 1997; 16:635–8.
crossref
7. Bas AM, Nano HD. In situ myopic keratomileusis results in 30 eyes at 15 months. J Refract Corneal Surg. 1991; 7:223–31.
crossref
8. Pallikaris IG, Siganos DS. Excimer laser in situ keratomileusis and photorefractive keratectomy for correction of high myopia. J Refract Corneal Surg. 1994; 10:498–510.
crossref
9. Fiander DC, Tayfour F. Excimer lase in situ keratomileusis in 124 myopic eyes. J Refract Surg. 1995; 11:S234–8.
crossref
10. Wan XH, Lee HC, Stulting RD. . Exacerbation of Avellino corneal dystrophy after laser in situ keratomileusis. Cornea. 2002; 21:223–6.
crossref
11. Jun RM, Tchah H, Kim TI. . Avellino corneal dystrophy after LASIK. Ophthalmology. 2004; 111:463–8.
crossref
12. Chung SH, Kim CY, Kim EK. The Classification and Clinical Characteristics in Korean Patients with Avellino Corneal Dystrophy. J Korean Ophthalmol Soc. 2005; 46:938–44.
13. Song QH, Singh RP, Richardson TP. . Transforming growth factorbeta1 expression in cultured corneal fibroblasts in response to injury. J Cell Biochem. 2000; 77:186–99.
14. Brown CT, Applebaum E, Banwatt R. . Synthesis of stromal glycosaminoglycans in response to injury. J Cell Biochem. 1995; 59:57–68.
crossref
15. Kay EP, Lee MS, Seong GJ. . TGF-betas stimulate cell proliferation via an autocrine production of FGF-2 in corneal stromal fibroblasts. Curr Eye Res. 1998; 17:286–93.
16. Chen C, Michelini-Norris B, Stevens S. . Measurement of mRNAs for TGFs and extracellular matrix proteins in corneas of rats after PRK. Invest Ophthalmol Vis Sci. 2000; 41:4108–16.
17. Jun RM, Tchah H, Kim TI. . Avellino corneal dystrophy after LASIK. Ophthalmology. 2004; 111:463–8.
crossref
18. Rho MI, Grossniklaus HE., Chung SH. . Avellino Corneal Dystrophy Exacerbated After LASIK: Scanning Electron Microscopic Findings. Cornea. 2006; 25:306–11.
19. Moon JW, Kim SW, Kim TI. . Homozygous granular corneal dystrophy type II (Avellino corneal dystrophy): natural history and progression after treatment. Cornea. 2007; 26:1095–100.
20. Escribano J, Hernando N, Ghosh S. . cDNA from human ocular ciliary epithelium homologous to beta ig-h3 is preferentially expressed as an extracellular protein in the corneal epithelium. J Cell Physiol. 1994; 160:511–21.
21. Akiya S, Takahashi H, Nakano N. . Granular-lattice (Avellino) corneal dystrophy. Ophthalmologica. 1999; 213:58–62.
crossref
22. Korvatska E, Munier FL, Chaubert P. . On the role of kerato-epithelin in the pathogenesis of 5q31-linked corneal dystrophies. Invest Ophthalmol Vis Sci. 1999; 40:2213–9.
23. Kim TI, Pak JH, Chae JB. . Mitomycin C inhibits recurrent Avellino dystrophy after phototherapeutic keratectomy. Cornea. 2006; 25:220–3.
crossref
24. Kanai A, Yamaguchi T, Nakajima A. The histochemical and analytical electron microscopy studies of the corneal granular dystrophy. Nippon Ganka Gakkai Zasshi. 1977; 81:145–54.
25. Wittebol-Post D, van der Want JJ, van Bijsterveld OP. Granular dystrophy of the cornea (Groenouw’s type I). Is the keratocyte the primary source after all? Ophthalmologica. 1987; 195:169–77.
crossref
26. Menasche M, Savoldelli M, Pouliquen Y. The keratocyte or fibroblast of the cornea: morphological and biochemical characteristics in normal stroma and a few cases of corneal dystrophies. Pathol Biol. 1992; 40:871–8.
27. Shimazaki J, Shimmura S, Ishioka M, Tsubota K. Randomized clinical trial of deep lamellar keratoplasty vs penetrating keratoplasty. Am J Ophthalmol. 2002; 134:159–65.

Figure 1.
Slit-lamp photographs showing areas of corneal deposits after LASIK.
jkos-49-1415f1.tif
Figure 2.
Slit-lamp photographs showing exacerbated Avellino corneal dystrophy after LASIK. Corneal images from case 1: (A) Right eye (B) Left eye
jkos-49-1415f2.tif
Figure 3.
Contrast sensitivity test: (A) before mechanical removal of corneal deposits from LASIK interface, (B) at 2 weeks after surgery, (C) at three and a half years after surgery (R=right eye; L=left eye; solid line=right; dotted line=left).
jkos-49-1415f3.tif
Figure 4.
(a) Corneal image from case 1: (A) before removal of LASIK flap (at three and a half years after mechanical removal of corneal deposits from LASIK interface). (B) 2 weeks and (C) 1 year and 1 month after LASIK flap removal (R=right eye; L=left eye).
jkos-49-1415f4.tif
Figure 5.
Corneal images from case 2 (A) before deep lamellar keratoplasty (DLKP). (B) after 6 months of DLKP (R) and after 4 months of DLKP (L). (R=right eye; L=left eye)
jkos-49-1415f5.tif
Table 1.
Clinical Characteristics of Avellino Corneal Dystrophy Patients Exacerbated after LASIK
Characteristics No. of eyes
Male Female
Sex 9 (18 eyes) 19 (38 eyes) 56
Age (years) 30.32±7.20 (22~48) 56
Time to exacerbation after surgery (months) 47.80±26.67 (7~108) 56
Schirmer test (mm/5min) 7.17±5.75 (2~24) 18
preoperative postoperative
UCVA 0.09±0.09 (HM~0.4) 0.56±0.27 (HM~1.25) 30/56
BCVA§ 0.99±0.14 (0.7~1.25) 0.73±0.23 (0.4~1.25) 44/54
Refractive error (Diopter) -5.89±3.23 (-14.50~+1.50) -0.56±1.09 (-3.63~+1.00) 56/54
Corneal Refractive Power (Diopter) 44.13±1.38 (41.13~47.25) 40.54±2.72 (36.00~44.50) 42/18
Corneal thickness (μ m) 536.39±36.02 (460~626) 338.25±105.64 (225~474) 36/8
Amounts of correction (Diopter) -5.45±3.14 (-10.25~+1.38) 36
Thickness (μ m) Diameter (mm)
LASIK flap 135±18.67 (100~160) 8.44±1.03 (5.5~10) 32/32

LASIK=laser in situ kertomileusis; acuity.

UCVA=uncorrected visual acuity

HM=hand movement

§ BCVA=best corrected visual

Table 2.
Comparison of BCVA* between Pre- and Post- LASIK
    Eyes (%)
BCVA Worsened 34 (60.7)
No change 6 (10.7)
Improved 0 (0)
  Unknown 16 (28.6)

BCVA=best corrected visual acuity

LASIK=laser in situ kertomileusis

Table 3.
Comparison of CST* between Pre- and Post-LASIK
    Eyes (%)
CST Normal range 9 (16.0)
Subnormal 31 (55.4)
  N/A 16 (28.6)

CST=contrast sensitivity test

LASIK=laser in situ kertomileusis

N/A=not accessed.

Table 4.
Status of Corneal Deposits at Pre- and Post-LASIK
Eyes (%)
preoperative postoperative
Presence 34 (60.71) 56 (100)
Absence 5 (8.93) 0 (0)
N/A 17 (30.36) 0 (0)
Amounts 1-5 3 (5.36) 0 (0)
6-10 17 (30.36) 0 (0)
11-19 4 (7.14) 0 (0)
20≤ 2 (3.57) 56 (100)
N/A 30 (53.57) 0 (0)

LASIK=laser in situ kertomileusis

N/A=not accessed.

Table 5.
Presence of Diffuse Fine Deposits and Exacerbation after LASIK
Eyes (%)
Diffuse fine deposits Exacerbation
Presence 56 (100) 56 (100)
Absence 0 (0) 0 (0)

LASIK=laser in situ kertomileusis.

Table 6.
Location of Corneal Deposits after LASIK
Eyes (%)
Superior 0 (0)
Superior, center, inferior 4 (7.1)
Center 8 (14.3)
Center, inferior 43 (76.8)
Inferior 1 (1.8)

LASIK=laser in situ kertomileusis.

Table 7.
Types of LASER instruments Used
Eyes (%)
NIDEK EC-5000 6 (10.7)
LADARVision 4 (7.1)
MEL60 4 (7.1)
MEL70 4 (7.1)
VISX strar S2 4 (7.1)
VISX star S3 4 (7.1)
VISX strar S4 4 (7.1)
CHIRON (B&C) 2 (3.6)
Kerator 217 2 (3.6)
MEL80 2 (3.6)
Schwind Keratom Multiscan 2 (3.6)
Technolas C-217 2 (3.6)
Telco 2 (3.6)
VISX 2020 2 (3.6)
VISX STAR 2 (3.6)
Unknown 10 (17.9)
Total 56 (100)
Table 8.
Types of Microkeratomes Used
  Eyes (%)
Hansatome 4 (7.1)
ACS 12 (21.4)
Nidek MK2000 6 (10.7)
Moria LSK1 6 (10.7)
Moria C&B 2 (3.6)
Moria C&B evolution 2 4 (7.1)
SCMD 8 (14.3)
Innovatome 2 (3.6)
Unkown 12 (21.4)
Total 56 (100)
TOOLS
Similar articles