Abstract
Purpose
To investigate whether there are differences in ocular risk factors reportedly associated with the development of normal tension glaucoma (NTG) between glaucomatous eyes and normal visual field (VF) eyes of monocular NTG patients.
Methods
Thirty-six patients who had NTG in one eye and normal RNFL and VF in the fellow eye were included in this hospital-based cross-sectional retrospective survey. We analyzed the difference between glaucomatous eyes and normal VF eyes according to an intra-individual, inter-ocular comparison of ocular parameters, including intraocular pressures (IOP), central corneal thickness (CCT), optic disc size, myopia, optic disc hemorrhage, and zone β of peripapillary atrophy. Measurements of optic disc size and area and the angular and radial extent of zone β were obtained using a Heidelberg Retina Tomograph. We also evaluated the correlation of each parameter with mean deviation (MD) and pattern standard deviation (PSD).
References
1. Shields MB. Textbook of glaucoma. 5th ed.Baltimore: Lippincott Williams & Wilkins;2005. p. 197–207.
2. von Graefe A. Über die Iridectomie bei Galucom und über den glaucomatöusen Prozess. Albrecht von Graefes Arch Ophthalmol. 1857; 3:456–650.
3. Drance S, Anderson DR, Schulzer M. Risk factors for progression of visual field abnormalities in normal-tension glaucoma. Am J Ophthalmol. 2001; 131:699–708.
4. Jun JY, Hwang JH, Park HJ, Uhm KB. Accuracy of optic disc parameters obtained by the Heidelberg Retina Tomograph in the diagnosis of glaucoma. J Korean Ophthalmol Soc. 2004; 45:1503–14.
5. Jonas JB. Clinical implications of peripapillary atrophy in glaucoma. Curr Opin Ophthalmol. 2005; 16:84–8.
6. Ehlers N, Hansen FK. Central corneal thickness in low-tension glaucoma. Acta Ophthalmol. 1974; 52:740–6.
7. Caprioli J, Spaeth GL. Comparison of the optic nerve head in high- and low-tension glaucoma. Arch Ophthalmol. 1985; 103:1145–9.
8. Caprioli J, Spaeth GL. Comparison of visual field defects in the low-tension glaucomas with those in the high-tension glaucomas. Am J Ophthalmol. 1984; 97:730–7.
9. Levene RZ. Low tension glaucoma: a critical review and new material. Surv Ophthalmol. 1980; 24:621–64.
10. Cartwright MJ, Anderson DR. Correlation of asymmetric damage with asymmetric intraocular pressure in normal-tension glaucoma (low-tension glaucoma). Arch Ophthalmol. 1988; 106:898–900.
11. Crichton A, Drance SM, Douglas GR, Schulzer M. Unequal intraocular pressure and its relation to asymmetric visual field defects in low-tension glaucoma. Ophthalmology. 1989; 96:1312–4.
12. Haefliger IO, Hitchings RA. Relationship between asymmetry of visual field defects and intraocular pressure difference in an untreated normal (low) tension glaucoma population. Acta Ophthalmol. 1990; 68:564–7.
13. Shah S, Chatterjee A, Mathai M, et al. Relationship between corneal thickness and measured intraocular pressure in a general ophthalmology clinic. Ophthalmology. 1999; 106:2154–60.
14. Tuulonen A, Airaksinen PJ. Optic disc size in exfoliative, primary open angle, and low-tension glaucoma. Arch Ophthalmol. 1992; 110:211–3.
15. Yang JG, Park KH. A comparison of optic nerve head topography in primary open-angle glaucoma and normal-tension glaucoma in Korean. Korean J Ophthalmol. 1997; 11:79–83.
16. Eid TE, Spaeth GL, Moster MR, Augsburger JJ. Quantitative differences between the optic nerve head and peripapillary retina in low-tension and high-tension primary open-angle glaucoma. Am J Ophthalmol. 1997; 124:805–13.
17. Yamagami J, Araie M, Shirato S. A comparative study of optic nerve head in low- and high-tension glaucomas. Graefes Arch Clin Exp Ophthalmol. 1992; 230:446–50.
18. Park HJ, Choi BG. The quantitative evaluation of optic nerve head of normal tension glaucoma. J Korean Ophthalmol Soc. 2000; 41:1203–9.
19. Iester M, Mikelberg FS. Optic nerve head morphologic characteristics in high-tension and normal-tension glaucoma. Arch Ophthalmol. 1999; 117:1010–3.
20. Jonas JB, Sturmer J, Papastathopoulos KI, et al. Optic disc size and optic nerve damage in normal pressure glaucoma. Br J Ophthalmol. 1995; 79:1102–5.
21. Tomita G, Nyman K, Raitta C, Kawamura M. Interocular asymmetry of optic disc size and its relevance to visual field loss in normal-tension glaucoma. Graefes Arch Clin Exp Ophthalmol. 1994; 232:290–6.
22. Jonas JB, Fernandez MC, Naumann GO. Correlation of the optic disc size to glaucoma susceptibility. Ophthalmology. 1991; 98:675–80.
23. Klein BE, Klein R, Linton KL. Intraocular pressure in an American community. The Beaver Dam Eye Study. Invest Ophthalmol Vis Sci. 1992; 33:2224–8.
24. Jonas JB, Berenshtein E, Holbach L. Lamina cribrosa thickness and spatial relationships between intraocular space and cerebrospinal fluid space in highly myopic eyes. Invest Ophthalmol Vis Sci. 2004; 45:2660–5.
26. Rasker MT, van den Enden A, Bakker D, Hoyng PF. Deterioration of visual fields in patients with glaucoma with and without optic disc hemorrhages. Arch Ophthalmol. 1997; 115:1257–62.
27. Airaksinen PJ, Tuulonen A. Early glaucoma changes in patients with and without an optic disc haemorrhage. Acta Ophthalmol. 1984; 62:197–202.
29. Miyake T, Sawada A, Yamamoto T, et al. Incidence of disc hemorrhages in open-angle glaucoma before and after trabeculectomy. J Glaucoma. 2006; 15:164–71.
30. Healey PR, Mitchell P, Smith W, Wang JJ. Optic disc hemorrhages in a population with and without signs of glaucoma. Ophthalmology. 1998; 105:216–23.
31. Kitazawa Y, Shirato S, Yamamoto T. Optic disc hemorrhage in low-tension glaucoma. Ophthalmology. 1986; 93:853–7.
32. Heijl A. Frequent disc photography and computerized perimetry in eyes with optic disc haemorrhage. A pilot study. Acta Ophthalmol. 1986; 64:274–81.
33. Derick RJ, Pasquale LR, Pease ME, Quigley HA. A clinical study of peripapillary crescents of the optic disc in chronic experimental glaucoma in monkey eyes. Arch Ophthalmol. 1994; 112:846–50.
34. Buus DR, Anderson DR. Peripapillary crescents and halos in normal-tension glaucoma and ocular hypertension. Ophthalmology. 1989; 96:16–9.
35. Jonas JB, Fernandez MC, Naumann GO. Glaucomatous parapapillary atrophy. Occurrence and correlations. Arch Ophthalmol. 1992; 110:214–22.
36. Park KH, Tomita G, Liou SY, Kitazawa Y. Correlation between peripapillary atrophy and optic nerve damage in normal-tension glaucoma. Ophthalmology. 1996; 103:1899–906.
37. Jonas JB, Naumann GO. Parapapillary chorioretinal atrophy in normal and glaucoma eyes. II. Correlations. Invest Ophthalmol Vis Sci. 1989; 30:919–26.
38. Araie M, Sekine M, Suzuki Y, Koseki N. Factors contributing to the progression of visual field damage in eyes with normal-tension glaucoma. Ophthalmology. 1994; 101:1440–4.
39. Jonas JB, Xu L. Parapapillary chorioretinal atrophy in normal-pressure glaucoma. Am J Ophthalmol. 1993; 115:501–5.
40. Puska P, Harju M, Liebkind R. Peripapillary atrophy in the unilateral exfoliation syndrome. Graefes Arch Clin Exp Ophthalmol. 2004; 242:301–5.
41. Fantes FE, Anderson DR. Clinical histologic correlation of human peripapillary anatomy. Ophthalmology. 1989; 96:20–5.
42. Hayreh SS. The 1994 Von Sallman Lecture. The optic nerve head circulation in health and disease. Exp Eye Res. 1995; 61:259–72.
43. Law SK, Choe R, Caprioli J. Optic disk characteristics before the occurrence of disk hemorrhage in glaucoma patients. Am J Ophthalmol. 2001; 132:411–3.
44. Ahn JK, Kang JH, Park KH. Correlation between a disc hemorrhage and peripapillary atrophy in glaucoma patients with a unilateral disc hemorrhage. J Glaucoma. 2004; 13:9–14.
45. Tezel G, Kass MA, Kolker AE, Wax MB. Comparative optic disc analysis in normal pressure glaucoma, primary open-angle glaucoma, and ocular hypertension. Ophthalmology. 1996; 103:2105–13.
46. Kono Y, Jonas JB, Zangwill L, et al. Agreement of measurement of parapapillary atrophy with confocal scanning laser ophthalmoscopy and planimetry of photographs. J Glaucoma. 1999; 8:105–10.
47. Wang Y, Xu L, Zhang L, et al. Peripapillary atrophy in elderly Chinese in rural and urban Beijing. Eye. 2006.
48. Ramrattan RS, Wolfs RC, Jonas JB, et al. Determinants of optic disc characteristics in a general population: The Rotterdam Study. Ophthalmology. 1999; 106:1588–96.
Table 1.
Number of Subjects | Glaucomatous eye | Normal VF eye | p value* | |
---|---|---|---|---|
BCVA (LogMar) | 36 | 0.01±0.03 | 0.01±0.03 | 0.520 |
Mean deviation (dB) | 36 | -6.4±5.5 | -1.2±1.7 | < 0.001 |
Pattern standard deviation (dB) | 36 | 8.6±4.7 | 2.1±0.6 | < 0.001 |
Baseline IOP (mmHg) | 36 | 17.2±2.5 | 16.7±3.0 | 0.143 |
Modified IOP (mmHg) | 36 | 17.1±3.4 | 16.9±3.8 | 0.831 |
Spherical equivalents (diopters) | 36 | -1.69±2.3 | -1.31±1.9 | 0.074 |
Central corneal thickness (µm) | 36 | 532.8±30.7 | 529.5±28.1 | 0.246 |
Optic disc hemorrhage (eyes) | 36 | 3/36 | 0/36 | 0.239† |
Optic disc size (mm²) | 22 | 2.58±0.61 | 2.54±0.57 | 0.792 |
Zone β parameters | ||||
Prevalence | 36 | 17/36 (47%) | 15/36 (42%) | 0.500‡ |
Area (mm²) | 22 | 0.65±1.42 | 0.43±0.87 | 0.003 |
Angular extent (degree) | 22 | 128.0±149.6 | 108.2±139.2 | 0.148 |
Radial extent (mm) | 22 | 0.30±0.51 | 0.20±0.30 | 0.163 |
Zone β area / disc area | 22 | 0.26±0.54 | 0.16±0.29 | 0.004 |
Table 2.
Number of subject | Δ MD* | P value† | Δ PSD | P value‡ | |
---|---|---|---|---|---|
Δ Baseline IOP (mmHg) | 36 | 0.01 | 0.472 | -0.09 | 0.328 |
Δ Modified IOP (mmHg) | 36 | 0.44 | 0.152 | -0.07 | 0.360 |
Δ Spherical equivalents (diopters) | 36 | 0.07 | 0.341 | -0.24 | 0.087 |
Δ Central corneal thickness (µm) | 36 | 0.20 | 0.524 | -0.13 | 0.695 |
Δ Optic disc size (mm2) | 22 | 0.26 | 0.244 | -0.19 | 0.386 |
Zone β parameters | |||||
Δ Area (mm2) | 22 | -0.68 | 0.349 | 0.05 | 0.382 |
Δ Angular extent (degree) | 22 | -0.60 | 0.365 | -0.05 | 0.384 |
Δ Radial extent (mm) | 22 | -3.11 | 0.034 | 0.25 | 0.077 |
Δ Zone β area / disc area | 22 | -0.49 | 0.390 | 0.02 | 0.460 |