Journal List > J Korean Ophthalmol Soc > v.49(8) > 1008043

Ahn, Kim, Kim, and Kim: Wavefront and Visual Function Analysis After Aspherical and Spherical Intraocular Lenses Implantation

Abstract

Purpose

To compare postoperative wavefront aberration and visual functions between aspherical Tecnis Z9003, a new acrylic aspheric intraocular lens (IOL), and spherical AcrySof SA60AT IOL.

Methods

Fifty patients (56 eyes) who underwent cataract extraction and were implanted with spherical or aspherical IOLs were randomly evaluated by wavefront analysis, including an examination of spherical aberration and higher-order aberrations using two different types of aberrometers (ray tracing and automatic retinoscope), manifested refraction, a contrast sensitivity test, and modulation transfer function (MTF), three months after surgery.

Result

There were no statistically significant differences of spherical equivalent and best-corrected visual acuity between the two different IOL groups. However, the aspherical IOL group showed less spherical aberration and better contrast sensitivity and MTF than the spherical IOL group.

Conclusions

Tecnis Z9003 could compensate for positive spherical aberrations of the cornea and improve contrast sensitivity and MTF, thereby improving visual function.

References

1. Owsley C, Sekuler R, Siemsen D. Contrast sensitivity throughout adulthood. Vision Res. 1983; 23:689–99.
crossref
2. McLellan JS, Marcos S, Burns SA. Age-related changes in monochromatic wave aberrations of the human eye. Invest Ophthalmol Vis Sci. 2001; 42:1390–5.
3. Guirao A, Redondo M, Artal P. Optical aberrations of the human cornea as a function of age. J Opt Soc Am A Opt Image Sci Vis. 2000; 17:1697–702.
crossref
4. Oshika T, Klyce SD, Applegate RA, Howland HC. Changes in corneal wavefront aberrations with aging. Invest Ophthalmol Vis Sci. 1999; 40:1351–55.
5. Artal P, Berrio E, Guirao A, Piers P. Contribution of the cornea and internal surface to the change of ocular aberrations with age. J Opt Soc Am A Opt Image Sci Vis. 2002; 19:137–43.
6. Artal P, Guirao A, Berrio E, Williams DR. Compensation of corneal aberrations by the internal optics in the human eye. J Vis. 2001; 1:1–8.
crossref
7. Mester U, Dillinger P, Anterist N. Impact of a modified optic design on visual function: clinical comparative study. J Cataract Refract Surg. 2003; 29:652–60.
crossref
8. Rawer R, Stork W, Spraul CW, Lingenfelder C.Imaging quality of intraocular lenses. J Cataract Refract Surg. 2005; 31:1618–31.
crossref
9. Guirao A, Redondo M, Geraghty E. . Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted. Arch Ophthalmol. 2002; 120:1143–51.
crossref
10. Chalita MR, Krueger RR. Correlation of aberrations with visual acuity and symptoms. Ophthalmol Clin North Am. 2004; 17:135–42.
crossref
11. Holladay JT, Piers PA, Koranyi G. . A new intraocular lens design to reduce spherical aberration of pseudophakic eyes. J Refract Surg. 2002; 18:683–91.
crossref
12. Packer M, Fine IH, Hoffman RS, Piers PA. Prospective randomized trial of an anterior surface modified prolate intraocular lens. J Refract Surg. 2002; 18:692–6.
crossref
13. Bellucci R, Scialdone A, Buratto L. . Visual acuity and contrast sensitivity comparison between Tecnis and AcrySof SA60AT intraocular lenses: a multicenter randomized study. J Cataract Refract Surg. 2005; 31:712–7.
crossref
14. Denoyer A, Lez ML, Majzoub S, Pisella P. Quality of vision after cataract surgery after Tecnis Z9000 intraocular lens implantation: Effect of contrast sensitivity and wavefront aberration improvements on the quality of daily vision. J Cataract Refract Surg. 2007; 33:210–6.
15. Rozema JJ, Van Dyck D, Tassignon M. Clinical comparison of 6 aberrometers. Part I: Technical specifications. J Cataract Refract Surg. 2005; 31:1114–27.
16. Marcos S, Barbero S, Jimenez-Alfaro I. Optical quality and depth-of-field of eyes implanted with spherical and aspheric intraocular lenses. J Refract Surg. 2005; 21:223–35.
crossref
17. Padmanabhan P, Yoon G, Porter J. . Wavefront aberration in eyes with acrysof monofocal intraocular lenses. J Refract Surg. 2006; 22:237–42.
18. Park I, Park C, Ryu K. Corneal Astigmatic Changes by Temporal Incision or Oblique Incision in Sutureless Cataract Surgery. J Korean Ophthalmol Soc. 1995; 36:1467–72.
19. Guirao A, Tejedor J, Artal P. Corneal aberrations before and after small-incision cataract surgery. Invest Ophthalmol Vis Sci. 2004; 45:4312–9.
crossref
20. Barbero S, Marcos S, Jime´nez-Alfaro I. Optical aberrations of intraocular lenses measured in vivo and in vitro. J Opt Soc Am A Opt Image Sci Vis. 2003; 20:1841–51.
crossref
21. Atchison DA. Design of aspheric intraocular lenses. Ophthalmic Physiol Opt. 1991; 11:137–146.
crossref
22. Altmann GE, Nichamin LD, Lane SS, Pepose JS. Optical performance of 3 intraocular lens designs in the presence of decentration. J Cataract Refract Surg. 2005; 31:574–85.
crossref
23. Wang L, Koch DD. Effect of decentration of wavefront- corrected intraocular lenses on the higher-order aberrations of the eye. Arch Ophthalmol. 2005; 123:1226–30.
24. Akkin C, Ozler SA, Mentes J. Tilt and decentration of bag fixated lenses: a comparative study between capsulorrhexis and envelope techniques. Doc Ophthalmol. 1994; 87:199–209.
25. Mutlu FM, Bilge AH, Altinsoy HI, Yamusak E. The role of capsulotomy and intraocular lens type on tilt and decentration of polymethylmethacrylate and foldable acrylic lenses. Ophthalmologica. 1998; 212:359–63.
crossref
26. Hayashi K, Harada M, Hayashi H. . Decentration and tilt of polymethyl methacrylate, silicone, and acrylic soft intraocular lenses. Ophthalmology. 1997; 104:793–8.
crossref
27. Norrby NE, Grossman LW, Geraghty ED. . Determining the imaging quality of intraocular lens. J Cataract Refract Surg. 1998; 24:703–14.
28. Ginsburg AP. Contrast sensitivity: determining the visual quality and function of cataract, intraocular lenses and refractive surgery. Curr Opin Ophthalmol. 2006; 17:19–26.

Figure 1.
Ocular and internal aberrations of spherical and aspherical IOL-implanted groups at 4-mm pupil zone RMS Total=root mean measured by iTrace. (* p<0.05; square of total aberrations; RMS HoA=root mean square of § 7th total higher-order aberrations from 3rd to 6th order; SA=spherical 8th coma aberration; coma aberration; aberration)
jkos-49-1248f1.tif
Figure 2.
Ocular and internal aberrations of spherical and aspherical IOL implanted groups at 6-mm pupil zone : RMS Total=root mean measured by iTrace. (* p<0.05; RMS HoA=Root mean square square of total aberrations; § 7th of total higher order aberrations from 3rd to 6th order; SA=spherical 8th coma aberration; coma aberration, aberration)
jkos-49-1248f2.tif
Figure 3.
Ocular and internal aberrations of spherical and aspherical IOL implanted groups at 4 mm pupil zone measured by OPD scan. (* p<0.05; RMS Total=root mean square of total aberrations; RMS HoA=root mean square of § 7th total higher order aberrations from 3rd to 6th order; SA=spherical 8th coma aberration; coma aberration; aberration).
jkos-49-1248f3.tif
Figure 4.
Ocular and internal aberrations of spherical and aspherical IOL implanted groups at 6-mm pupil zone measured by OPD scan. (* p<0.05; RMS Total = root mean RMS HoA = root mean square square of total aberrations; § 7th of total higher order aberrations from 3rd to 6th order; SA=spherical 8th coma aberration; coma aberration; aberration).
jkos-49-1248f4.tif
Figure 5.
Contrast sensitivity test result of spherical and aspherical IOL-implanted groups in mesopic condition (* p<0.05).
jkos-49-1248f5.tif
Figure 6.
Contrast sensitivity test result of spherical and aspherical IOL-implanted groups in photopic condition (* p<0.05).
jkos-49-1248f6.tif
Figure 7.
Modulation transfer function (MTF) of spherical and aspherical IOL implanted groups at 6-mm pupil zone (* p<0.05).
jkos-49-1248f7.tif
Table 1.
Comparison of sex, age, manifest refraction, BCVA between spherical IOL-implanted group and aspherical IOL- implanted group
Spherical Aspherical P
Sex (M:F) 12:17 10:11
Age 61.30±13.69 59.43±15.32 0.634
MR* (SE) -0.39±0.91 -0.70±0.53 0.151
BCVA(logMAR) 0.08±0.17 0.04±0.08 0.290

* MR=manifest refraction;

SE=spherical equivalent;

BCVA=best corrected visual acuity.

Table 2.
Comparison of ocular and internal aberrations measured by iTrace aberrometer between spherical IOL-implanted group and aspherical IOL-implanted group
Optic zone Zernike’s coefficients Spherical Aspherical p
4 mm ocular aberration RMS Total 0.601±0.339 0.671±0.485 0.527
RMS HoA 0.306±0.163 0.360±0.279 0.410
coma 7 -0.098±0.122 0.041±0.155 0.000*
coma 8 0.024±0.124 0.049±0.104 0.430
SA§ 0.114±0.062 -0.002±0.073 0.000*
Internal aberration RMS Total 0.532±0.243 0.522±0.277 0.892
RMS HoA 0.268±0.142 0.325±0.259 0.341
coma 7 -0.115±0.106 0.008±0.119 0.000*
coma 8 0.008±0.085 0.023±0.104 0.568
SA 0.040±0.039 -0.058±0.066 0.000*
6 mm ocular aberration RMS Total 1.783±0.812 2.000±1.364 0.527
RMS HoA 1.256±0.687 1.334±1.050 0.773
coma 7 -0.348±0.429 -0.098±0.459 0.055
coma 8 0.174±0.338 0.041±0.419 0.220
SA 0.516±0.339 -0.048±0.292 0.000*
Internal aberration RMS Total 1.566±0.901 1.536±1.047 0.914
RMS HoA 1.065±0.723 1.320±1.008 0.336
coma 7 -0.303±0.450 -0.113±0.329 0.111
coma 8 0.126±0.335 0.010±0.419 0.286
SA 0.169±0.275 -0.328±0.257 0.000*

* p<0.05; (3rd to 6th order);

RMS Total=root mean square of total aberrations.;

RMS HoA=root mean square of total higher order aberrations

§ SA=Spherical aberration.

Table 3.
Comparison of ocular and internal aberrations measured by OPD scan aberrometer between spherical IOL-implanted group and aspherical IOL-implanted group
Optic zone Zernike’s coefficients Spherical Aspherical P
4 mm ocular aberration RMS Total 0.802±0.553 0.792±0.390 0.937
RMS HoA 0.319±0.184 0.374±0.345 0.440
coma 7 0.046±0.081 0.031±0.109 0.541
coma 8 0.017±0.113 0.009±0.073 0.783
SA§ 0.103±0.061 -0.022±0.053 0.000*
Internal aberration RMS Total 1.185±1.457 1.491±2.009 0.511
RMS HoA 0.653±0.536 0.863±1.433 0.443
coma 7 0.022±0.142 0.012±0.124 0.772
coma 8 -0.002±0.139 -0.002±0.105 0.991
SA 0.035±0.091 -0.110±0.163 0.000*
6 mm ocular aberration RMS Total 2.769±2.014 2.025±1.208 0.119
RMS HoA 1.051±0.885 0.957±0.626 0.664
coma 7 0.111±0.306 -0.045±0.392 0.101
coma 8 0.044±0.299 0.019±0.130 0.709
SA 0.416±0.235 -0.220±0.429 0.000*
Internal aberration RMS Total 2.412±1.564 1.851±1.079 0.140
RMS HoA 1.438±1.076 0.925±0.619 0.039*
coma 7 0.219±0.537 0.099±0.277 0.308
coma 8 0.020±0.362 -0.019±0.199 0.634
SA(internal) 0.074±0.268 -0.421±0.437 0.000*

* p<0.05;

RMS Total=root mean square of total aberrations; (3rd to 6th order);

RMS HoA=root mean square of total higher order aberrations

§ SA=spherical aberration.

Table 4.
Comparison of modulation transfer function measured by iTrace scan at 6 mm optic zone between spherical IOL-implanted group and aspherical IOL-implanted group
Spatial frequency Spherical Aspherical P
5 0.156±0.105 0.276±0.158 0.005*
10 0.067±0.045 0.103±0.487 0.011*
15 0.040±0.014 0.054±0.022 0.020*
20 0.028±0.014 0.040±0.018 0.017*
25 0.022±0.010 0.030±0.013 0.017*
30 0.018±0.009 0.023±0.009 0.048*

* p<0.05.

TOOLS
Similar articles