Journal List > J Korean Ophthalmol Soc > v.48(12) > 1007990

Kim and Choi: GDx-VCC Performance to Discriminate Normal, Pre-perimetric Glaucomatous Eyes

Abstract

Purpose

This study was designed to assess the diagnostic value of scanning laser polarimetry with variable comeal compensation (GDx-VCC) in the diagnosis of preperimetric glaucoma.

Methods

The study included 132 eyes of 132 patients with normal intraocular pressure, including 38 normal eyes, 60 eyes with pre-perimetric glaucoma, and 34 eyes with early glaucoma. The parameters of GDx-VCC were analyzed and compared in these groups using ANOVA. The parameter with the most powerful diagnostic value was defermirred by an ROC curve, and it's sensitivity and specificity were calculated.

Results

Among GDx-VCC parameters, NFI was the most valuable parameter that could detect pre-perimetric glaucoma in normal eyes. A cut-off value of 12 was the optimal NFI value, which offered the highest sensitivity and specificity in discriminating between normal and pre-perimetric glaucomatous eyes. However, there were no statistically significant differences in GDx-VCC parameters between pre-perimetric and early glaucomatous eyes. A statistically significant correlation was found between NFI and visual field indices in early glaucomatous eyes.

Conclusions

GDx-VCC can be useful as a screening test for early detection of pre-perimetric and early glaucoma with normal intraocular pressure.

References

1. Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with anutomated perimetry in human eyes with glaucoma. Am J Ophthalmol. 1989; 107:453–64.
2. Mardin CY, Horn FK, Jonas JB, Budde WM. Preperimetric glaucoma diagnosis by confocal scanning laser tomography of the optic disc. Br J Ophthamol. 1999; 83:299–304.
crossref
3. Choplin NT, Lundy DC, Dreher AW. Differentiating patient with glaucoma from glaucoma suspects and normal subjects by nerve fiber laser assessment with scanning laser polarimetry. Ophthalmology. 1998; 105:2068–76.
4. Tannenbaum DP, Zangwill LM, Bowd C, et al. Relationship between visual filed testing and scanning laser polarimetry in patients with a large up-to disc ratio. Am J Ophthamol. 2001; 132:501–6.
5. Reus NJ, Colen TP, Lemij HG. Visualization of localized retinal nerve fiber layer defect with GDx with Individualized and with fixed compensation anterior segment birefringence. Ophthalmology. 2003; 110:1512–6.
6. Lee SY, Ha DW, Kook MS. Ability of scanning laser polarimetry(GDx) to discriminate among early glaucomatous, ocular hypertensive and normal eyes in the Korean population. Korean J Ophthalmol. 2004; 18:1–8.
7. Cho HS, Seong MC, Kook MS. Scanning laser polarimetry using variable corneal compensation in detection of localized visual field defects. J Korean Ophthamol Soc. 2005; 26:1498–1508.
8. Bagga H, Greenfield DS, Feuer W, Knighton RW. Scanning laser polarimetry with variable corneal compensation and optical coherent tomography in normal and glaucomatous eyes. Am J Ophthalmol. 2004; 135:521–9.
9. Greenfield D, Knighton R, Feuer WJ, et al. Correction for corneal polarization axis improves discriminating power of scanning lasers polarimetry. Am J Ophthalmol. 2002; 134:27–33.
10. Zhou Q, Weinreb RN. Individualized compensation of anterior segment birefringence during scanning laser polarimetry. Invest Ophthalmol Vis Sci. 2002; 43:2221–8.
11. Lee JB, Cho YS, Choi YJ, Hong YJ. The prevalence of glaucoma in Korean adults. J Korean Ophthalmol Soc. 1993; 34:65–9.
12. Hwang JU, Jung JY, Cho HS, Kook MS. Discriminating ability of scanning laser polarimetry with variable corneal compensation in normal and glaucomatous eyes. J Korean Ophthalmol Soc. 2006; 47:253–63.
13. Horn FK, Jonas JB, Martus P, et al. Polarimetric measurement of retinal nerve fiber layer thickness in glaucoma diagnosis. J Glaucoma. 1999; 8:353–62.
crossref
14. Harwerth RS, Dowson LC, Smith EL, et al. Neural losses correlated with visual losses in clinical perimetry. Invest Ophthalmol Vis Sci. 2004; 45:3152–60.
crossref
15. Caprioli J, Prum B, Zeyen T. Comparison of method to evaluate the optic nerve head and nerve fiber layer for glaucomatous change. Am J Ophthalmol. 1996; 121:659–67.
16. Tielsch JM, Katz J, Quigley HA, et al. Intraobserver and interobserver agreement in measurement of optic disc characteristics. Ophthalmology. 1988; 95:350–6.
crossref
17. Resus NJ, Lemij HG. The relationship between Standard automated perimetry and GDx VCC measurements. Invest Ophthalmol Vis Sci. 2004; 45:840–5.
18. Weinerb RN, Bowd C, Zangwill LM. Glaucoma detection using scanning laser polarimetry with variable corneal polarization compensation. Arch Ophthalmol. 2003; 121:218–24.
crossref
19. Chi QM, Tomita G, Inazuma K, et al. Evaluation of the effect of aging on the retinal nerve fiber layer thickness using scanning laser polarimetry. J Glaucoma. 1995; 4:406–13.
crossref
20. Mederios FA, Zangwill LM, Bowd C, et al. Use of progressive glaucomatous optic disk change as the reference standard for evaluation of diagnostic tests in glaucoma. Am J Ophthalmol. 2005; 139:1010–8.
21. Funaki S, Shirakashi M, Yaoeda K, et al. Specificity and sensitivity of glaucoma detection in the Japanese population using scanning laser polarimetry. Br J Ophthalmol. 2002; 86:70–4.
crossref
22. Mederios FA, Zanwill LM, Bowd C, Weinerb RN. Comparison of the GDx-VCC scanning laser ophthalmoscope, and Stratus OCT optical coherent tomograph for the detection of glaucoma. Arch Ophthalmol. 2004; 122:827–37.
23. Resus NJ, Lemij HG. The relationship between Standard automated perimetry and GDx VCC measurements. Invest Ophthalmol Vis Sci. 2004; 45:840–5.

Figure 1.
ROC curves for NFI for discrimination.
jkos-48-1686f1.tif
Table 1.
Characteristics and MD*, PSD† in each group
  Normal Pre-perimetric glaucoma Early glaucoma p-value
No. of eyes 38 60 34
Age (years) 41.58± 12.91 47.03±8.65 51.35±11.05 <0.05
Gender (M:F) 18:20 32:28 12:22
IOP (mmHg) 16.21±2.80 16.26±2.75 16.76±3.04 >0.05
Refractive error (D) -1.32±1.26 -0.87±1.32 -1.05±1.71 >0.05
CD ratio 0.42±0.10 0.69±0.08 0.70±0.08 <0.05
MD (dB) -0.24±0.86 -0.93±1.60 -2.14±1.66 <0.05
PSD (dB) 1.57±0.23 1.87±0.35 3.42±2.13 <0.05

MD* mean deviation,

PSD† pattern standard deviation.

Table 2.
Mean values of GDx-VCC parameters in each groups (Mean±SD)
  Normal Pre-perimetric glaucoma Early glaucoma p-value* p-value p-value
NFI 13.68±6.03 19.96±9.79 22.59±7.14 <0.05 <0.05 >0.05
TSNIT average 57.42±3.52 55.89±8.14 54.12±4.74 >0.05 <0.05 >0.05
Superior average 73.15±3.90 67.96±5.56 67.08±7.02 <0.05 <0.05 >0.05
Inferior average 67.51±6.55 63.87±7.54 63.75±12.33 >0.05 >0.05 >0.05
TSNIT SD 25.36±2.90 22.94±3.75 21.42±6.73 >0.05 <0.05 >0.05
Superior ratio 7.22±14.78 3.23±0.86 2.94±0.14 >0.05 >0.05 >0.05
Inferior ratio 3.73±0.95 3.23±0.85 2.81± 1.09 <0.05 <0.05 >0.05
Maximum modulation 3.22±0.97 2.70±0.77 2.45±0.82 <0.05 <0.05 >0.05
Superior maximum 86.88±6.97 81.09±11.22 80.23±9.12 <0.05 <0.05 >0.05
Inferior maximum 83.01±8.37 80.21±9.09 78.49±13.18 >0.05 >0.05 >0.05
Ellipse modulation 4.34±1.20 4.00± 1.12 3.61± 1.15 >0.05 <0.05 >0.05

* Between normal and pre-perimetric glaucoma.

Between normal and early glaucoma.

Between pre-perimetric glaucoma and early glaucoma.

Table 3.
Pearson correlation coefficient between NFI and visual field indices in early glaucomatous eyes
  MD P PSD P
NFI -0.419 <0.01 0.421 <0.01
TSNIT SD 0.365 <0.05 -0.379 <0.01
Max modulation 0.476 <0.01 -0.336 <0.05
Ellipse modulation 0.397 <0.01 -0.462 <0.01

p value in MD,

p value in PSD.

Table 4.
Area under ROC curves for discrimination
Parameters AUROC
normal and preperimetric glaucoma preperimatric and early glaucoma normal and early glaucoma
NFI 0.755 0.675 0.889
TSNIT average 0.277 0.509 0.282
Superior average 0.202 0.471 0.196
Inferior average 0.379 0.415 0.322
TSNIT SD 0.283 0.403 0.239
Superior ratio 0.307 0.318 0.229
Inferior ratio 0.331 0.293 0.227
Max modulation 0.337 0.302 0.220
Superior maximum 0.258 0.458 0.256
Inferior maximum 0.346 0.389 0.287
Ellipse modulation 0.402 0.320 0.290
Table 5.
Likelihood ratios for NFI at three different cutoff values to discriminating normal and pre-perimetric and early glaucomatous eyes
  Between normal and pre-perimetric g laucoma Between pre-perimetric glaucoma and early glaucoma
Criterion +LR -LR +PV -PV +LR -LR +PV -PV
>10 1.27 0.25 66.7 71.4 1.07 0.00 37.0 100.0
>12* 1.71 0.21 73.0 75.0 1.05 0.59 37.2 75.0
>14 1.90 0.48 0.48 57.1 1.26 1.26 41.7 81.8
>16 2.53 0.59 0.59 51.7 1.54 1.54 46.7 82.4
>17 2.06 0.72 0.72 46.9 1.90 1.90 51.9 85.0
>18 2.74 0.67 0.67 48.5 1.49 1.49 45.8 73.9
>19 2.32 0.75 0.75 45.7 1.76 1.76 50.0 76.0
>21 5.70 0.74 0.74 46.2 1.96 1.96 52.6 75.0
>22 5.07 0.77 0.77 45.0 1.76 1.76 50.0 6.6

+LR positive likelihood ratio, -LR negative likelihood ratio.

+PV positive predictive value, -PV negative predictive value.

* cut-off value between normal and pre-perimetric glaucoma.

cut-off value between pre-perimetric glaucoma and early glaucoma.

TOOLS
Similar articles