Journal List > J Korean Ophthalmol Soc > v.48(12) > 1007989

Song and Uhm: Discrimination between Normal and Early Stage of Glaucomatous Eyes Using the Stratus Optical Coherence Tomography

Abstract

Purpose

To evaluate the diagnostic ability of Stratus optical coherence tomography (OCT) parameters to distinguish normal eyes from those with early glaucomatous visual field defects.

Methods

One eye each of 52 normal-tension glaucoma patients with early visual field defects (mean deviation, −3.98±1.30dB; range, −0.01 to −5.86dB) and 88 age-matched normal subjects were enrolled. The Peripapillary retinal nerve fiber layer (RNFL) and optic nerve head regions were scanned using the Stratus OCT. Areas under the receiver operating characteristic curve (AROC) and the sensitivity and specificity for various OCT parameters were used to assess the performance of OCT.

Results

The AROC for the C/D area ratio was 0.865. Other high AROC values included the vertical C/D ratio (0.848), the average RNFL thickness (0.813), and the RNFL thickness in the inferior quadrant (0.791). A stepwise discriminant analysis found that a combination of the C/D area ratio and RNFL thickness in the inferior quadrant could correctly identify 86.4% of the normals and 80.8% of the glaucoma patients (AROC=0.893).

Conclusions

In our sample of patients with early visual field defects, Stratus OCT parameters showed moderate discriminating abilities. Combining the C/D area ratio and RNFL thickness in the inferior quadrant by discriminant analysis improved the diagnostic ability to detect glaucoma.

References

1. Quigley HA, Addicks EM, Green WR. Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy. Arch Ophthalmol. 1982; 100:135–46.
2. Sommer A, Katz J, Quigley HA, et al. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol. 1991; 109:77–83.
crossref
3. Quigley HA, Katz J, Derick RJ, et al. An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. Ophthalmology. 1992; 99:19–28.
crossref
4. Uhm KB, Hong C, Kim JH, Baek CE. Sensitivity, specificity, and predictive value of optic disc parameters in primary open-angle glaucoma. J Korean Ophthalmol Soc. 1997; 38:1819–26.
5. Jonas JB, Gusek GC, Naumann GO. Optic disc, cup and neuroretinal rim size, configuration and correlations in normal eyes. Invest Ophthalmol Vis Sci. 1995; 29:1151–8.
6. Chi T, Ritch R, Stickler D, et al. Racial differences in optic nerve head parameters. Arch Ophthalmol. 1989; 107:836–9.
crossref
7. Poinoosawmy D, Fontana L, Wu JX, et al. Variation of nerve fiber layer thickness measurements with age and ethnicity by scanning laser polarimetry. Br J Ophthalmol. 1997; 81:350–4.
8. Paunescu LA, Schuman JS, Price LL, et al. Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using Stratus OCT. Invest Ophthalmol Vis Sci. 2004; 45:1716–24.
9. Garway-Heath DF, Hitchings RA. Sources of bias in studies of optic disc and retinal nerve fiber layer morphology. Br J Ophthalmol. 1998; 82:986.
10. Brusini P, Salvetat ML, Zeppieri M, et al. Comparison between GDx VCC scanning laser polarimetry and Stratus OCT optical coherence tomography in the diagnosis of chronic glaucoma. Acta Ophthalmol Scand. 2006; 84:650–5.
crossref
11. Bourne RR, Medeiros FA, Bowd C, et al. Comparability of retinal nerve fiber layer thickness measurements of optical coherence tomography instruments. Invest Ophthalmol Vis Sci. 2005; 46:1280–5.
crossref
12. Pieroth L, Schuman JS, Hertzmark E, et al. Evaluation of focal defects of the nerve fiber layer using optical coherence tomography. Ophthalmology. 1999; 106:570–9.
crossref
13. Chen HY, Huang ML. Discrimination between normal and glaucomatous eyes using Stratus optical coherence tomography in Taiwan Chinese subjects. Graefes Arch Clin Exp Ophthalmol. 2005; 243:894–902.
crossref
14. Medeiros FA, Zangwill LM, Bowd C, et al. Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. Am J Ophthalmol. 2005; 139:44–55.
crossref
15. Wollstein G, Ishikawa H, Wang J, et al. Comparison of three optical coherence tomography scanning areas for detection of glaucomatous damage. Am J Ophthalmol. 2005; 139:39–43.
crossref
16. Manassakorn A, Nouri-Mahdavi K, Caprioli J. Comparison of retinal nerve fiber layer thickness and optic disk algorithms with optical coherence tomography to detect glaucoma. Am J Ophthalmol. 2006; 141:105–15.
crossref
17. Bowd C, Zangwill LM, Berry CC, et al. Detecting early glaucoma by assessment of retinal nerve fiber layer thickness and visual function. Invest Ophthalmol Vis Sci. 2001; 42:1993–2003.
18. Zangwill LM, Bowd C, Berry CC, et al. Discriminating between normal and glaucomatous eyes using the Heidelberg retina tomograph, GDx nerve fiber analyzer, and optical coherence tomograph. Arch Ophthalmol. 2001; 119:985–93.
crossref
19. Kamal DS, Garway-Heath DF, Hitchings RA, et al. Use of sequential Heidelberg retina tomograph images to identify changes at the optic disc in ocular hypertensive patients at risk of developing glaucoma. Br J Ophthalmol. 2000; 84:993–8.
crossref
20. Parisi V, Manni G, Centofanti M, et al. Correlation between optical coherence tomography, pattern electroretinogram, and visual evoked potentials in open-angle glaucoma patients. Ophthalmology. 2001; 108:905–12.
crossref
21. Kang KD, Park CK. Comparison of diagnostic precision between preprogramed indicator and newly calculated indicator in optical coherence tomography. J Korean Ophthalmol Soc. 2006; 47:243–52.
22. Leung CK, Chan WM, Hui YL, et al. Analysis of retinal nerve fiber layer and optic nerve head in glaucoma with different reference plane offsets, using optical coherence tomography. Invest Ophthalmol Vis Sci. 2005; 46:891–9.
crossref
23. Iliev ME, Meyenberg A, Garweg JG. Morphometric assessment of normal, suspect and glaucomatous optic discs with Stratus OCT and HRT II. Eye. 2006; 20:1288–99.
crossref
24. Schuman JS, Wollstein G, Farra T, et al. Comparison of optic nerve head measurements obtained by optical coherence tomography and confocal scanning laser ophthalmoscopy. Am J Ophthalmol. 2003; 135:504–12.
crossref
25. Jonas JB, Schmidt AM, Muller-Bergh JA, et al. Human optic nerve fiber count and optic disc size. Invest Ophthalmol Vis Sci. 1992; 33:2012–8.
26. Savini G, Zanini M, Carelli V, et al. Correlation between retinal nerve fiber layer thickness and optic nerve head size:an optical coherence tomography study. Br J Ophthalmol. 2005; 89:489–92.
27. Bowd C, Zangwill LM, Blumenthal EZ, et al. Imaging of the optic disc and retinal nerve fiber layer: the effects of age, optic disc area, refractive error, and gender. J Opt Soc Am A Opt Image Sci Vis. 2002; 19:197–207.
crossref

Figure 1.
Areas under the receiver operating characteristic curves (AROC) of the linear discriminant function (LDF), of the best parameters from the Stratus OCT optic nerve head (cup/disc area ratio and vertical cup/disc ratio) and retinal nerve fiber layer (average thickness and inferior quadrant thickness).
jkos-48-1675f1.tif
Table 1.
Characteristics of the study groups
  Normal eyes (n=88) Early glaucomatous eyes (n=52) P value
Age (years) 60.1±10.3 59.2±10.6 0.63
Gender (male:female) 38:50 23:29 0.90
Refractive error (diopter) 0.16±1.32 -0.37±2.10 0.08
MD (dB) -1.87±1.18 -3.98±1.30 <0.001
CPSD (dB) 1.68±0.37 3.74±1.91 <0.001

Values are number or means±standard deviation.

MD=mean deviation, CPSD=corrected pattern standard deviation.

Table 2.
Comparison of Stratus OCT parameters between the two groups
  Normal eyes (n=88) Early glaucomatous eyes (n=52) P value
Optic disc parameters
 Disc area (mm2) 2.57±0.56 3.05±0.70 <0.001
 VIRA (mm3) 0.30±0.20 0.14±0.11 <0.001
 HIRW (mm2) 1.55±0.25 1.30±0.30 <0.001
 Cup area (mm2) 1.04±0.48 1.93±0.85 <0.001
 Rim area (mm2) 1.53±0.42 1.07±0.44 <0.001
 C/D area ratio 0.40±0.13 0.63±0.17 <0.001
 Horizontal C/D ratio 0.67±0.14 0.82±0.14 <0.001
 Vertical C/D ratio 0.57±0.11 0.74±0.13 <0.001
RNFL thickness parameters (μm)
 Average 103.8±10.9 85.8±19.8 <0.001
 Superior quadrant 127.3±16.0 104.4±27.3 <0.001
 Temporal quadrant 72.6± 15.9 63.5±17.9 0.002
 Inferior quadrant 133.8±17.9 106.8±29.5 <0.001
 Nasal quadrant 81.7±17.1 68.5±23.3 <0.001
 O'clock hour segment
 12 (superior) 132.6±21.6 107.9±32.4 <0.001
 11 132.4±23.9 107.5±33.5 <0.001
10 88.0±20.0 7 5.1±23.2 0.001
  9 (temporal) 57.6±12.6 53.0± 15.5 0.055
  8 72.8±20.6 64.0±22.0 0.018
  7 137.2±24.1 112.3±38.5 <0.001
  6 (inferior) 148.3±27.2 115.2±34.6 <0.001
  5 115.9±22.1 92.7±29.2 <0.001
  4 81.5±19.5 70.9±25.7 0.007
  3 (nasal) 67.1±16.5 57.2±20.4 0.002
  2 96.1±23.4 77.9±28.5 <0.001
  1 117.1±19.6 97.5±28.5 <0.001

Values are means±standard deviation.

VIRA=vertical integrated rim area (an estimation of the total volume of the RNFL tissue in the rim), HIRW=horizontal integrated rim width (an estimation of the total neuroretinal rim area). RNFL=retinal nerve fiber layer.

Table 3.
Areas under the receiver operator characteristic curve (AROC), sensitivity, specificity, best cut-off point, and accuracy for Stratus OCT parameters and linear discriminant function
  AROC (SE) Best sensitivity/specificity (%) Bestcut-off point Sensitivity (%) at Specificity of 80% Accuracy (%)
Optic disc parameters
 VIRA (mm3) 0.824±0.040 80.7/75.0 0.155 71.6 66.4
 HIRW (mm2) 0.738±0.043 67.0/63.5 1.427 53.4 65.0
 Cup area (mm2) 0.823±0.040 76.9/73.9 1.258 69.2 76.4
 Rim area (mm2) 0.786±0.042 76.1/75.0 1.253 60.2 71.4
 C/D area ratio 0.865±0.037 82.7/78.4 0.517 82.7 80.0
 Horizontal C/D ratio 0.819±0.041 80.8/65.9 0.748 71.2 71.4
 Vertical C/D ratio 0.848±0.037 78.8/77.3 0.661 75.0 77.9
RNFL thickness parameters (μm)
 Average 0.813±0.039 71.6/76.9 97.86 65.9 72.1
 Superior quadrant 0.781±0.043 69.3/69.2 117.5 48.9 73.6
 Temporal quadrant 0.623±0.050 55.7/55.8 67.50 29.5 54.3
 Inferior quadrant 0.791±0.041 70.5/75.0 124.5 51.1 73.6
 Nasal quadrant 0.673±0.049 59.1/61.5 76.50 30.7 59.3
 O'clock hour segment
 12 (superior) 0.742±0.045 69.3/65.4 122.5 50.0 67.1
 11 0.725±0.045 65.9/65.4 124.5 50.0 65.0
 10 0.639±0.049 59.1/50.0 80.50 33.0 57.1
  9 (temporal) 0.574±0.053 56.8/55.8 54.50 17.0 54.3
  8 0.598±0.051 55.7/55.8 67.00 26.1 52.9
  7 0.677±0.048 59.1/63.5 131.5 42.0 62.9
  6 (inferior) 0.779±0.041 70.5/71.2 133.5 60.2 70.0
  5 0.737±0.043 65.9/63.5 106.5 53.4 62.1
  4 0.608±0.052 54.5/53.8 76.50 27.3 54.3
  3 (nasal) 0.645±0.050 60.2/59.6 60.50 34.1 56.4
  2 0.679±0.047 56.8/57.7 87.50 43.2 58.6
  1 0.715±0.046 65.9/65.4 109.5 50.0 65.7
Linear discriminant function 0.405-0.023×inferior quadrant RNFL thickness+5.096×cup/disc area ratio
0.893±0.032 80.8/86.4 0.224 82.7 84.3

SE=standard error, VIRA=vertical integrated rim area, HIRW=horizontal integrated rim width, RNFL=retinal nerve fiber layer.

Table 4.
Correlation between Stratus OCT parameters and mean deviation (MD) or corrected pattern standard deviation (CPSD) of the Humphrey full-threshold 30-2 program
  MD CPSD
  R P value R P value
Optic disc parameters
 Disc area (mm2) -0.111 0.365 0.199 0.102
 VIRA (mm3) 0.316 0.008 -0.238 0.049
 HIRW (mm2) 0.388 0.001 -0.239 0.047
 Cup area (mm2) -0.286 0.017 0.260 0.031
 Rim area (mm2) 0.395 0.001 -0.148 0.224
 C/D area ratio -0.384 0.001 0.221 0.069
 Horizontal C/D ratio -0.280 0.020 0.115 0.347
 Vertical C/D ratio -0.368 0.002 0.294 0.014
RNFL thickness parameters (μm)
 Average 0.464 <0.001 -0.312 0.009
 Superior quadrant 0.422 <0.001 -0.301 0.012
 Temporal quadrant 0.214 0.078 -0.177 0.146
 Inferior quadrant 0.454 <0.001 -0.431 <0.001
 Nasal quadrant 0.405 0.001 -0.029 0.814
 O'clock hour segment
 12 (superior) 0.441 <0.001 -0.321 0.007
 11 0.181 0.136 -0.176 0.148
 10 0.142 0.246 -1.134 0.271
  9 (temporal) 0.101 0.411 -0.050 0.683
  8 0.239 0.048 -0.261 0.030
  7 0.361 0.002 -0.499 <0.001
  6 (inferior) 0.412 <0.001 -0.405 0.001
  5 0.426 <0.001 -0.197 0.117
  4 0.362 0.002 -0.030 0.805
  3 (nasal) 0.423 <0.001 0.052 0.671
  2 0.367 0.002 -0.087 0.478
  1 0.461 <0.001 -0.315 0.008
Discriminant score -0.479 <0.001 0.360 0.002

* VIRA=vertical integrated rim area, HIRW=horizontal integrated rim width, RNFL=retinal nerve fiber layer.

Table 5.
The best parameters and linear discriminant function of stratus OCT for the present study and published studies
References MD (dB) The best parameters Linear discriminant function
  Glaucoma severity ONH (AROC) RNFLT (AROC) (AROC)
Present study -3.98 C/D area ratio (0.87) Average (0.81) C/D area ratio +
early Vertical C/D ratio (0.85) Inferior quadrant (0.79) Inferior quadrant RNFLT (0.89)
1. Brusini et al10 -3.70 C/D area ratio (0.88) Average (0.84) NA
early to
moderate
2. Chen et al13 -2.80 Vertical C/D ratio (0.73) Average (0.79) Average RNFLT +
early C/D area ratio (0.71) 10+11+12 o'clock thickness+Cup
area+VIRA (0.88)
3. Medeiros et al14 -4.96 C/D area ratio (0.88) Inferior quadrant (0.91) C/D area ratio+Average RNFLT+
early to Vertical C/D ratio (0.88) Average (0.91) 7+11+9 o'clock thickness (0.97)
severe HIRW (0.88) Inferior maximum (0.90)
4. Wollstein et al15 -5.85 Rim area (0.97) Average (0.94) NA
early to HIRW (0.96)
severe VIRA (0.95)
5. Manassakorn et al16 -5.30 Vertical C/D ratio (0.90) 7 o'clock thickness (0.93) NA
early to Inferior quadrant (0.92)
severe

* MD=mean deviation, ONH=optic nerve head, RNFL=retinal nerve fiber layer thickness, AROC=areas under the receiver operator characteristic curve, NA=not applicable, VIRA=vertical integrated rim area, HIRW=horizontal integrated rim width.

TOOLS
Similar articles