Journal List > J Korean Ophthalmol Soc > v.48(8) > 1007904

Choi and Park: Interpretation of Frequency Doubling Technology Perimeter in Diagnosis of Glaucoma and Glaucoma Suspect

Abstract

Purpose

To find applicable parameters of the frequency doubling technology perimeter (FDP), which is known to be useful in detecting early visual field loss.

Methods

The subjects were 65 eyes of normal individuals, 58 eyes of glaucoma suspects, and 37 eyes of glaucoma patients. FDP (MD, PSD), SAP (MD, PSD, CPSD), and 5 parameters of OCT were analyzed. The receiver operating characteristic (ROC) curve, sensitivity, and specificity of each parameter were evaluated, and the comparison of FDP parameters by Pearson's chi-square was made between the glaucoma suspect group and the normal group. The same comparison was made among the normal+glaucoma suspect and glaucoma group.

Results

In discriminating between the normal and glaucoma suspect groups, the FDP-PSD revealed an AUC of 0.745 (cutoff: 3.17dB), which was significantly larger than that of SAP-PSD with an AUC of 0.660 (cutoff: 1.73dB). In comparing FDP, PSD by Anderson criteria was most reliable with a hit ratio of 0.732. On the other hand, in discriminating among the normal+glaucoma suspect group and glaucoma group, the SAP-PSD showed an AUC 0.971 (cutoff: 2.92dB), much larger than the FDP-PSD with an AUC of 0.863 (cutoff: 3.78dB). In addition, in comparing the parameters of FDP by Pearson chi-square, PSD 1% was the most reliable with a hit ratio of 0.813.

Conclusions

FDP is a valuable screening tool in detecting early visual field loss. PSD by Anderson criteria can be a reliable parameter for the diagnosis of pre-perimetric glaucoma, and PSD 1% can be used in the discrimination of perimetric glaucoma.

References

1. Rand A, Karim D, Sharon F, et al. Shield's Textbook of Glaucoma. 5th ed.Baltimore: Willians & Wilkins;2005. p. 1–2.
2. Medeiros FA, Sample PA, Weinreb RN. Frequency doubling technology perimetry abnormalities as predictors of glaucomatous visual field loss. Am J Ophthalmol. 2004; 137:863–71.
crossref
3. Bayer AU, Erb C. Short wavelength automated perimetry, frequency doubling technology perimetry and pattern electroretinography for prediction of progressive glaucomatous standard visual field defect. Ophthalmology. 2002; 109:1009–17.
4. Brusini P, Salvetat ML, Zeppieri M, Parisi L. Frequency doubling technology perimetry with the Humphrey matrix 30-2 test. J Glaucoma. 2006; 15:77–83.
crossref
5. Kang KD, Park CK. Comparison of diagnostic precision between preprogramed indicator and newly calculated indicator in optical coherence tomography. J Korean Ophthalmol Soc. 2006; 47:243–52.
6. Sim JO, Park CK. Optic nerve head analysis obtained by optical coherence tomography for the diagnosis of glaucoma in Koreans. J Korean Ophthalmol Soc. 2004; 45:1885–93.
7. Cello KE, Nelson-Quigg JM, Johnson CA. Frequency doubling technology perimetry for detection of glaucomatous visual field loss. Am J Ophthalmol. 2000; 129:314–22.
crossref
8. Glovinsky Y, Quigley HA, Dunkelberger GR. Retinal ganglion cell loss is size dependent in experimental glaucoma. Invest Ophthalmol Vis Sci. 1991; 32:484–91.
9. Kaplan E, Sharpley RM. The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. Proc Natl Acad Sci U S A. 1986; 83:2755–7.
crossref
10. Silverman SE, Trick GI, Hart WM. Motion perception is abnormal in primary open-angle glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci. 1990; 31:722–9.
11. Kelly DH. Nonlinear visual responses to flickering sinusoidal gratings. J Opt Soc Am. 1981; 71:1051–5.
crossref
12. Anderson AJ, Johnson CA. Mechanisms isolated by frequency doubling technology perimetry. Invest Ophthalmol Vis Sci. 2002; 43:398–401.
13. Morgan JE. Selective cell death in glaucoma : does it really occur? Br J Ophthalmol. 1994; 78:875–9.
14. Anderson AJ, Johnson CA. Frequency-doubling technology perimetry. Ophthalmol Clin North Am. 2003; 16:213–25.
crossref
15. Khong JJ, Dimitrov PM. Can the specificity of the FDT for glaucoma be improved by confirming abnormal results? J Glaucoma. 2001; 10:199–202.
crossref
16. Ra H, Park CK. Glaucoma discrimination by combined use of frequency doubling technology and Heidelberg retina tomography II. J Korean Ophthalmol Soc. 2005; 46:306–15.
17. Wolfs RC, Borger PH, Ramrattan RS, et al. Changing views on open-angle glaucoma: definitions and prevalences. Invest Ophthalmol Vis Sci. 2000; 41:3309–21.
18. Mastropasqua L, Brusini P, Carpineto P, et al. Humphrey matrix frequency doubling technology perimetry and optical coherence tomography measurement of the retinal nerve fiber layer thickness in both normal and ocular hypertensive subjects. J Glaucoma. 2006; 15:328–35.
crossref
19. Brusini P. Frequency doubling technology staging system 2. J Glaucoma. 2006; 15:315–20.
crossref
20. Chauhan BC, Johnson CA. Test-retest variability of frequency doubling perimetry and conventional perimetry in glaucoma patients and normal subjects. Invest Ophthalmol Vis Sci. 1999; 40:648–56.
21. Johnson CA, Samuels SJ. Screening for glaucomatous visual field loss with frequency-doubling perimetry. Invest Ophthalmol Vis Sci. 1997; 38:413–25.
22. Trible JR, Schultz RO, Tobinson JC, et al. Accuracy of glaucoma detection with frequency-doubling perimetry. Am J Ophthalmol. 2003; 110:1903–8.
crossref
23. Heeg GP, Jansonius NM. Influence of test reliability on the screening performance of frequency-doubling perimetry. Am J Ophthalmol. 2006; 141:585–7.
crossref
24. Heeg GP, Stouterbeer R, Jamsonius NM. Strategies for improving the diagnostic specificity of the frequency doubling perimeter. Acta Ophthalmol Scand. 2005; 83:53–6.
crossref
25. Horn FK, Wakili N, Unemann AM, et al. Testing for glaucoma with frequency-doubling perimetry in normals, ocular hypertensive, and glaucoma patients. Graefes Arch Clin Exp Ophthalmol. 2003; 240:658–65.
26. Gardiner SK, Anderson DR, Fingeret M, et al. Evaluation of decision rules for frequency-doubling technology screening tests. Optom Vis Sci. 2006; 83:432–7.
crossref
27. Pierre-Filho Pde T, Schimiti RB, de Vasconcellos JP, Costa VP. Sensitivity and specificity of frequency-doubling technology, tendency-oriented perimetry, SITA Standard and SITA Fast perimetry in perimetrically inexperienced individuals. Acta Ophthalmol Scand. 2006; 84:345–50.
28. Paolos F, Fabio M, Luca R, Nicola O. Detecting glaucoma with frequency-doubling technology perimetry. J Glaucoma. 2005; 14:485–91.
29. Medeiros FA, Sample PA, Zangwill LM, et al. A statistical approach to the evaluation of covariate effects on the receiver operating characteristic curves of diagnostic tests in glaucoma. Invest Ophthalmol Vis Sci. 2006; 47:2520–7.
crossref

Figure 1.
ROC (receiver operator characteristic) curve of the discriminant formula. (Between glaucoma suspect and normal)
jkos-48-1096f1.tif
Figure 2.
ROC (receiver operator characteristic) curve of the discriminant formula. (Between ‘glaucoma’ and ‘or not’)
jkos-48-1096f2.tif
Table 1.
Patient characteristics and MD, PSD, CPSD in normal (N), glaucoma suspect (GS), glaucoma (G) group (N=160)
  Normal Glaucoma suspect Glaucoma P value   Post Hoc
Number (eye) 65 58 37      
Gender (Male/Female) 32/33 36/22 25/12      
Age (year±SD) 38.75±13.80 44.51±14.73 46.97±17.04 0.017 N  GS 0.113
          N  G 0.104
          GS  G 0.021
MD (dB±SD) -2.03±1.72 -2.33±1.72 -7.85±5.60 <0.001 N  GS 0.864
          N  G <0.001
          GS  G <0.001
PSD (dB±SD) 1.91±1.27 2.06±0.51 6.65±3.67 <0.001 N  GS 0.907
          N  G <0.001
          GS  G <0.001
CPSD (dB±SD) 1.10± 1.32 1.22±0.69 6.31±3.91 <0.001 N  GS 0.941
          N  G <0.001
          GS  G <0.001

MD : mean deviation.

PSD : pattern standard deviation.

CPSD : corrected pattern standard deviation.

Statistical significance was tested by analysis of varience (ANOVA), and post Hoc test was done by Scheffe method.

Table 2.
Comparison of mean value between normal (N), glaucoma suspect (GS) and glaucomata (G) group using FDP, OCT ONH & RNFL§ analysis and ophthalmoscopic exam
    Normal Glaucoma suspect Glaucoma P value   Post Hoc
OCT ONH VIRWΠ 0.27±0.21 0.16±0.07 0.11±0.07 <0.001 N  GS <0.001
  analysis           N  G <0.001
            GS  G 0.322
  HIRA# 1.59±0.27 1.41±0.26 1.22±0.23 <0.001 N  GS 0.001
            N  G <0.001
            GS  G 0.002
  C/D 0.62±0.10 0.70±0.09 0.76±0.11 <0.001 N  GS <0.001
  vert.ratio         N  G <0.001
            GS  G 0.026
OCT RNFL Iavg 138.98±19.36 122.45±21.44 90.14±29.20 <0.001 N  GS 0.005
  analysis           N  G <0.001
            GS  G <0.001
  Average 101.13±12.11 93.64±12.69 74.71±19.07 <0.001 N  GS 0.016
            N  G <0.001
            GS  G <0.001
FDP MD∗∗ -3.74±3.73 -6.09±5.39 -12.43±5.61 <0.001 N  GS 0.030
            N  G <0.001
            GS  G <0.001
  PSD†† 3.18±0.86 4.04±1.16 5.95±2.10 <0.001 N  GS 0.002
            N  G <0.001
            GS  G <0.001
Opthalmo C/D 0.47±0.15 0.62±0.13 0.70±0.14 <0.001 N  GS <0.001
  exam hoz.ratio         N  G <0.001
            GS  G 0.104
  C/D 0.47±0.14 0.62±0.11 0.72±0.13 <0.001 N  GS <0.001
  vert.ratio         N  G <0.001
            GS  G 0.001

FDP : frequency doubling technology perimeter.

OCT : optical coherence tomography.

ONH : optic nerve head.

§ RNFL : retinal nerve fiber layer.

Π VIRW : vertical integrated rim volume (mm3),

# HIRA : horizontal integrated rim area (mm2).

∗∗ MD : mean deviation.

†† PSD : pattern standard deviation.

Statistical significance was tested by analysis of varience (ANOVA), and post Hoc test was done by Scheffe method.

Table 3.
Area under the receiver operating characteristic curve (AUC), sensitivity, specificity by each parameters between glaucoma suspect and normal group
    AUC Sensitivity (%) Specificity (%) Cutoff value
OCT ONH analysis VIRW 0.727 75.90 63.10 0.205
  HIRA§ 0.675 67.20 52.30 1.545
  CDVRΠ 0.714 74.10 63.10 0.648
OCT RNFL# analysis Iavg 0.700 67.20 40.00 134.500
  Avg thick 0.680 67.20 40.00 99.320
FDP∗∗ MD†† 0.620 67.20 49.20 -3.450
  PSD‡‡ 0.745 75.90 63.10 3.170
SAP§§ MD 0.556 62.10 50.80 -2.160
  PSD 0.660 74.10 53.80 1.730
  CPSDΠΠ 0.600 56.90 60.00 1.190

OCT : optical coherence tomography.

ONH : optic nerve head.

VIRW : vertical integrated rim volume.

§ HIRA : horizontal integrated rim area.

Π CDVR : cup/disc vertical ratio.

# RNFL : retinal nerve fiber layer.

∗∗ FDP : frequency doubling technology perimeter.

† † MD : mean deviation.

‡ ‡ PSD : pattern standard deviation.

§§ SAP : standard automated perimetry.

ΠΠ CPSD : corrected pattern standard deviation.

Table 4.
Area under the receiver operating characteristic curve (AUC), sensitivity, specificity by each parameters between ‘glaucoma’ and ‘or not’
    AUC Sensitivity (%) Specificity (%) Cutoff value
OCT ONH analysis VIRW 0.761 71.40 71.50 0.139
  HIRA§ 0.790 71.40 76.40 1.335
  CDVRΠ 0.765 77.10 65.00 0.699
OCT RNFL# analysis Iavg 0.876 88.60 74.80 118.500
  Avg thick 0.832 85.70 58.50 95.780
FDP∗∗ MD†† 0.855 91.40 66.70 -5.540
  PSD‡‡ 0.863 88.60 65.90 3.775
SAP§§ MD 0.849 74.30 83.70 -3.665
  PSD 0.971 91.40 92.70 2.920
  CPSDΠΠ 0.959 94.30 90.20 1.940

OCT : optical coherence tomography.

ONH : optic nerve head.

VIRW : vertical integrated rim volume.

§ HIRA : horizontal integrated rim area.

π CDVR : cup/disc vertical ratio.

# RNFL : retinal nerve fiber layer.

∗∗ FDP : frequency doubling technology perimeter.

†† MD : mean deviation.

‡‡ PSD : pattern standard deviation.

§§ SAP : standard automated perimetry.

ΠΠ CPSD: corrected pattern standard deviation.

Table 5.
Comparisons of FDP by Pearson chi-square between glaucoma suspect and normal
  Hit ratio P value sensitivity (%) specificity (%) False positive False negative chi-square
GHT 0.608 <0.001 63.64 58.46 43.55 34.48 5.826
MD <1% 0.585 <0.001 29.31 84.62 37.04 42.71 3.469
MD<5% 0.610 <0.001 53.45 67.69 40.38 38.03 5.613
MD by adsΠ 0.634 <0.001 70.69 56.92 40.58 31.48 9.489
PSD§<1% 0.626 <0.001 29.31 92.31 22.73 40.59 9.753
PSD<5% 0.683 <0.001 62.07 73.85 32.08 31.43 16.122
PSD by adsΠ 0.732 <0.001 70.69 75.38 28.07 25.76 26.166
PSD by cutoff (3.17) 0.691 <0.001 75.86 63.08 35.29 25.45 18.799

FDP : frequency doubling technology perimeter.

GHT : glaucoma hemifield test.

MD : mean deviation.

§ PSD : pattern standard deviation.

Π ads : Anderson criteria.

Table 6.
Comparison of FDP by Pearson chi-square between ‘glaucoma’ and ‘or not’
  Hit ratio P value Sensitivity π%) Specificity π%) False positive False negative chi-square
GHT 0.592 <0.001 94.59 48.33 63.92 3.33 22.072
MD <1% 0.781 <0.001 78.38 78.05 48.21 7.69 39.809
MD<5% 0.656 <0.001 91.89 57.72 60.47 4.05 28.166
MD by adsΠ 0.563 <0.001 97.30 43.70 65.71 1.82 21.402
PSD§<1% 0.813 <0.001 78.38 82.11 43.14 7.34 47.932
PSD<5% 0.650 <0.001 91.89 56.91 60.92 4.11 27.307
PSD by adsΠ 0.625 <0.001 91.89 53.66 62.64 4.35 24.061
PSD by cutoff (3.78) 0.713 <0.001 89.19 65.85 56.00 4.71 34.606

FDP : frequency doubling technology perimeter.

GHT : glaucoma hemifield test.

MD : mean deviation.

§ PSD : pattern standard deviation.

Π ads : Anderson criteria.

TOOLS
Similar articles