Abstract
Constipation is one of the most common gastrointestinal disorders with a prevalence up to 16.5% in the general population. It is frequently multifactorial and the pathophysiologic mechanism of constipation is not fully understood. Many preclinical studies of constipation have used animal models. Translational research using these animal models is essential to the investigation of neurogenic and myogenic mechanisms of colon, and to the estimation of the clinical efficacy of new drugs. In this review, we discuss some of the current translational research projects on constipation using animal models.
References
1. Jun DW, Park HY, Lee OY, et al. A population-based study on bowel habits in a Korean community: prevalence of functional constipation and self-reported constipation. Dig Dis Sci. 2006; 51:1471–1477.
2. Suares NC, Ford AC. Prevalence of, and risk factors for, chronic idiopathic constipation in the community: systematic review and metaanalysis. Am J Gastroenterol. 2011; 106:1582–1591. quiz 1581, 1592.
3. Johanson JF, Kralstein J. Chronic constipation: a survey of the patient perspective. Aliment Pharmacol Ther. 2007; 25:599–608.
5. Korean Society of Neurogastroenterology and Motility. Constipation. 1st ed.Seoul: Medbook;2013.
6. Zarate N, Spencer NJ. Chronic constipation: lessons from animal studies. Best Pract Res Clin Gastroenterol. 2011; 25:59–71.
7. El-Salhy M, Sandström O, Holmlund F. Age-induced changes in the enteric nervous system in the mouse. Mech Ageing Dev. 1999; 107:93–103.
8. Smits GJ, Lefebvre RA. Influence of age on cholinergic and inhibitory nonadrenergic noncholinergic responses in the rat ileum. Eur J Pharmacol. 1996; 303:79–86.
9. Peck CJ, Samsuria SD, Harrington AM, King SK, Hutson JM, Southwell BR. Fall in density, but not number of myenteric neurons and circular muscle nerve fibres in guinea-pig colon with ageing. Neurogastroenterol Motil. 2009; 21:1075–1090.
10. Sanders KM, Koh SD, Ward SM. Interstitial cells of cajal as pacemakers in the gastrointestinal tract. Annu Rev Physiol. 2006; 68:307–343.
11. Dickens EJ, Hirst GD, Tomita T. Identification of rhythmically active cells in guinea-pig stomach. J Physiol. 1999; 514:515–531.
12. Knowles CH, De Giorgio R, Kapur RP, et al. The London Classification of gastrointestinal neuromuscular pathology: report on behalf of the Gastro 2009 International Working Group. Gut. 2010; 59:882–887.
13. Rae MG, Fleming N, McGregor DB, Sanders KM, Keef KD. Control of motility patterns in the human colonic circular muscle layer by pacemaker activity. J Physiol. 1998; 510:309–320.
14. Bywater RA, Small RC, Taylor GS. Neurogenic slow depolarizations and rapid oscillations in the membrane potential of circular muscle of mouse colon. J Physiol. 1989; 413:505–519.
15. Bywater RA, Spencer NJ, Fida R, Taylor GS. Second-, minute- and hour-metronomes of intestinal pacemakers. Clin Exp Pharmacol Physiol. 1998; 25:857–861.
16. Spencer NJ. Control of migrating motor activity in the colon. Curr Opin Pharmacol. 2001; 1:604–610.
17. Dickson EJ, Spencer NJ, Hennig GW, et al. An enteric occult reflex underlies accommodation and slow transit in the distal large bowel. Gastroenterology. 2007; 132:1912–1924.
18. Suo H, Zhao X, Qian Y, et al. Therapeutic effect of activated car-bon-induced constipation mice with Lactobacillus fermentum Suo on treatment. Int J Mol Sci. 2014; 15:21875–21895.
19. Hou ML, Chang LW, Lin CH, Lin LC, Tsai TH. Comparative pharmacokinetics of rhein in normal and loperamide-induced constipated rats and microarray analysis of drug-metabolizing genes. J Ethnopharmacol. 2014; 155:1291–1299.
20. Neri F, Cavallari G, Tsivian M, et al. Effect of colic vein ligature in rats with loperamide-induced constipation. J Biomed Biotechnol. 2012; 2012:896162.
21. Zhou M, Jia P, Chen J, et al. Laxative effects of Salecan on normal and two models of experimental constipated mice. BMC Gastroenterol. 2013; 13:52.
22. Kon R, Ikarashi N, Hayakawa A, et al. Morphine-induced constipation develops with increased aquaporin-3 expression in the colon via increased serotonin secretion. Toxicol Sci. 2015; 145:337–347.
23. Li Z, Zheng H, Li GB, Zhi H, Yuan WT. Alterations of Cajal cells in the colon of slow transit constipation rats. Zhonghua Wei Chang Wai Ke Za Zhi. 2013; 16:777–779.
24. Hegde SS, Eglen RM. Peripheral 5-HT4 receptors. FASEB J. 1996; 10:1398–1407.
25. Buchheit KH, Buhl T. Prokinetic benzamides stimulate peristaltic activity in the isolated guinea pig ileum by activation of 5-HT4 receptors. Eur J Pharmacol. 1991; 205:203–208.
26. Taniyama K, Makimoto N, Furuichi A, et al. Functions of peripheral 5-hydroxytryptamine receptors, especially 5-hydroxytrypt-amine4 receptor, in gastrointestinal motility. J Gastroenterol. 2000; 35:575–582.
27. Briejer MR, Akkermans LM, Schuurkes JA. Gastrointestinal prokinetic benzamides: the pharmacology underlying stimulation of motility. Pharmacol Rev. 1995; 47:631–651.
28. McLean PG, Coupar IM, Molenaar P. A comparative study of functional 5-HT4 receptors in human colon, rat oesophagus and rat ileum. Br J Pharmacol. 1995; 115:47–56.
29. Reeves JJ, Bunce KT, Humphrey PP. Investigation into the 5-hy-droxytryptamine receptor mediating smooth muscle relaxation in the rat oesophagus. Br J Pharmacol. 1991; 103:1067–1072.
30. Buchheit KH, Buhl T. Stimulant effects of 5-hydroxytryptamine on guinea pig stomach preparations in vitro. Eur J Pharmacol. 1994; 262:91–97.
31. Craig DA, Clarke DE. Pharmacological characterization of a neuronal receptor for 5-hydroxytryptamine in guinea pig ileum with properties similar to the 5-hydroxytryptamine receptor. J Pharmacol Exp Ther. 1990; 252:1378–1386.
32. Kilbinger H, Wolf D. Effects of 5-HT4 receptor stimulation on basal and electrically evoked release of acetylcholine from guinea-pig myenteric plexus. Naunyn Schmiedebergs Arch Pharmacol. 1992; 345:270–275.
33. Briejer MR, Schuurkes JA. 5-HT3 and 5-HT4 receptors and cholinergic and tachykininergic neurotransmission in the guinea-pig proximal colon. Eur J Pharmacol. 1996; 308:173–180.
34. Prins NH, Akkermans LM, Lefebvre RA, Schuurkes JA. 5-HT(4) receptors on cholinergic nerves involved in contractility of canine and human large intestine longitudinal muscle. Br J Pharmacol. 2000; 131:927–932.
35. Prins NH, Van Haselen JF, Lefebvre RA, Briejer MR, Akkermans LM, Schuurkes JA. Pharmacological characterization of 5-HT4 receptors mediating relaxation of canine isolated rectum circular smooth muscle. Br J Pharmacol. 1999; 127:1431–1437.
36. Nagakura Y, Ito H, Kiso T, Naitoh Y, Miyata K. The selective 5-hy-droxytryptamine (5-HT)4-receptor agonist RS67506 enhances lower intestinal propulsion in mice. Jpn J Pharmacol. 1997; 74:209–212.
37. Poen AC, Felt-Bersma RJ, Van Dongen PA, Meuwissen SG. Effect of prucalopride, a new enterokinetic agent, on gastrointestinal transit and anorectal function in healthy volunteers. Aliment Pharmacol Ther. 1999; 13:1493–1497.
38. Nagakura Y, Akuzawa S, Miyata K, et al. Pharmacological properties of a novel gastrointestinal prokinetic benzamide selective for human 5-HT4 receptor versus human 5-HT3 receptor. Pharmacol Res. 1999; 39:375–382.
39. Furuichi A, Makimoto N, Ogishima M, et al. In vivo microdialysis assessment of nerve-stimulated contractions associated with increased acetylcholine release in the dog intestine. Jpn J Pharmacol. 1999; 79:109–112.
40. Bingham S, King BF, Rushant B, Smith MI, Gaster L, Sanger GJ. Antagonism by SB 204070 of 5-HT-evoked contractions in the dog stomach: an in-vivo model of 5-HT4 receptor function. J Pharm Pharmacol. 1995; 47:219–222.
41. Taniyama K, Nakayama S, Takeda K, et al. Cisapride stimulates motility of the intestine via the 5-hydroxytryptamine receptors. J Pharmacol Exp Ther. 1991; 258:1098–1104.
42. Schuurkes JA, Van Nueten JM, Van Daele PG, Reyntjens AJ, Janssen PA. Motor-stimulating properties of cisapride on isolated gastrointestinal preparations of the guinea pig. J Pharmacol Exp Ther. 1985; 234:775–783.
43. Yoshida N, Omoya H, Oka M, Furukawa K, Ito T, Karasawa T. AS-4370, a novel gastrokinetic agent free of dopamine D2 receptor antagonist properties. Arch Int Pharmacodyn Ther. 1989; 300:51–67.
44. Sakurai-Yamashita Y, Yamashita K, Kanematsu T, Taniyama K. Localization of the 5-HT(4) receptor in the human and the guinea pig colon. Eur J Pharmacol. 1999; 383:281–285.
45. Takada K, Sakurai-Yamashita Y, Yamashita K, et al. Regional difference in correlation of 5-HT4 receptor distribution with cholinergic transmission in the guinea pig stomach. Eur J Pharmacol. 1999; 374:489–494.
46. McLean PG, Coupar IM. Stimulation of cyclic AMP formation in the circular smooth muscle of human colon by activation of 5-HT4-like receptors. Br J Pharmacol. 1996; 117:238–239.
47. Briejer MR, Bosmans JP, Van Daele P, et al. The in vitro pharmacological profile of prucalopride, a novel enterokinetic compound. Eur J Pharmacol. 2001; 423:71–83.
48. Briejer MR, Prins NH, Schuurkes JA. Effects of the enterokinetic prucalopride (R093877) on colonic motility in fasted dogs. Neurogastroenterol Motil. 2001; 13:465–472.
49. Bouras EP, Camilleri M, Burton DD, McKinzie S. Selective stimulation of colonic transit by the benzofuran 5HT4 agonist, prucalopride, in healthy humans. Gut. 1999; 44:682–686.
50. Coremans G, Kerstens R, De Pauw M, Stevens M. Prucalopride is effective in patients with severe chronic constipation in whom laxatives fail to provide adequate relief. Results of a double-blind, placebo-controlled clinical trial. Digestion. 2003; 67:82–89.
51. Emmanuel AV, Roy AJ, Nicholls TJ, Kamm MA. Prucalopride, a systemic enterokinetic, for the treatment of constipation. Aliment Pharmacol Ther. 2002; 16:1347–1356.
52. Tack J, van Outryve M, Beyens G, Kerstens R, Vandeplassche L. Prucalopride (Resolor) in the treatment of severe chronic constipation in patients dissatisfied with laxatives. Gut. 2009; 58:357–365.
53. Camilleri M, Kerstens R, Rykx A, Vandeplassche L. A placebo-controlled trial of prucalopride for severe chronic constipation. N Engl J Med. 2008; 358:2344–2354.