Journal List > Korean J Gastroenterol > v.63(5) > 1007230

Kwon, Han, Kim, Oh, Kwon, Jung, Kwon, Kim, and Kim: Changes in Causative Pathogens of Acute Cholangitis and Their Antimicrobial Susceptibility over a Period of 6 Years

Abstract

Background/Aims

We evaluated changes of causative pathogen in acute cholangitis and their antimicrobial susceptibility over six years and differences between community-acquired and hospital-acquired acute cholangitis at our institution.

Methods

Medical records of 1,596 patients with acute cholangitis and biliary drainage between August 2006 and August 2012 were reviewed retrospectively. Cases were divided according to time: period 1 (August 2006-December 2008, n=645, 40.4%), period 2 (January 2009-August 2012, n=951, 59.6%). Cases were divided according to community-acquired cholangitis (n=1,397, 87.5%) and hospital-acquired cholangitis (n=199, 12.5%). Causative pathogens and antimicrobial susceptibility were investigated in each group.

Results

Causative pathogen was isolated from bile culture in 1,520 out of 1,596 cases (95.2%). The three most frequently isolated Gram-negative bacteria were extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli (n=485, 30.4%), E. coli (n=237, 13.2%), and Citrobacter freundii (n=110, 6.9%). Between periods 1 and 2, prevalence of ESBL-producing E. coli and Klebsiella pneumoniae did not show significant change (36.7% vs. 32.1%, p=0.073; 6.6% vs. 6.2%, p=0.732). C. freundii showed a significant increase from period 1 to period 2 (1.7% vs. 13.2%, p=0.000). In both time periods, imipenem was the antimicrobial agent showing the highest rate of susceptibility (93.3% vs. 93.9%, p=0.783). Higher prevalence of ESBL-pro-ducing E. coli and C. freundii was observed in the hospital-acquired cholangitis group (52.1% vs. 31.2%, p=0.000; 15.9% vs. 7.3%, p=0.001).

Conclusions

The most common causative pathogen of acute cholangitis was ESBL-producing E. coli. Prevalence of C. freundii increased over the time period. Imipenem should be reserved as an alternative for resistant pathogens.

References

1. Lee DW, Chung SC. Biliary infection. Baillieres Clin Gastroenterol. 1997; 11:707–724.
crossref
2. Agarwal N, Sharma BC, Sarin SK. Endoscopic management of acute cholangitis in elderly patients. World J Gastroenterol. 2006; 12:6551–6555.
crossref
3. Lipsett PA, Pitt HA. Acute cholangitis. Surg Clin North Am. 1990; 70:1297–1312.
crossref
4. Schietroma M, Fiocca F, Colella A, et al. Morbidity and mortality in acute cholangitis. G Chir. 1988; 9:339–341.
5. Rerknimitr R, Fogel EL, Kalayci C, Esber E, Lehman GA, Sherman S. Microbiology of bile in patients with cholangitis or cholestasis with and without plastic biliary endoprosthesis. Gastrointest Endosc. 2002; 56:885–889.
crossref
6. Choi SH, Lee JE, Park SJ, et al. Emergence of antibiotic resistance during therapy for infections caused by Enterobacteria-ceae producing AmpC beta-lactamase: implications for antibiotic use. Antimicrob Agents Chemother. 2008; 52:995–1000.
7. Weber A, Schneider J, Wagenpfeil S, et al. Spectrum of pathogens in acute cholangitis in patients with and without biliary endoprosthesis. J Infect. 2013; 67:111–121.
crossref
8. Rodríguez-Baño J, Alcalá JC, Cisneros JM, et al. Community infections caused by extended-spectrum beta-lactamase-producing Escherichia coli. Arch Intern Med. 2008; 168:1897–1902.
9. Bapat RD, Supe AN, Patwardhan A, Kocher HM, Parab S, Sathe MJ. Biliary sepsis: an ascending infection. Indian J Gastroenterol. 1996; 15:126–128.
10. Sung JY, Costerton JW, Shaffer EA. Defense system in the biliary tract against bacterial infection. Dig Dis Sci. 1992; 37:689–696.
crossref
11. Hanau LH, Steigbigel NH. Acute (ascending) cholangitis. Infect Dis Clin North Am. 2000; 14:521–546.
crossref
12. Lorenz R, Herrmann M, Kassem AM, Lehn N, Neuhaus H, Classen M. Microbiological examinations and in-vitro testing of different antibiotics in therapeutic endoscopy of the biliary system. Endoscopy. 1998; 30:708–712.
crossref
13. Heo JH, Lee JH, Lee MY, et al. Bacterial identification in bile and blood of patients with acute cholangitis from benign and malignant bile duct obstruction. Korean J Gastroenterol. 2002; 40:53–59.
14. Bae WK, Moon YS, Kim JH, et al. Microbiologic study of the bile culture and antimicrobial susceptibility in patients with biliary tract infection. Korean J Gastroenterol. 2008; 51:248–254.
15. Negm AA, Schott A, Vonberg RP, et al. Routine bile collection for microbiological analysis during cholangiography and its impact on the management of cholangitis. Gastrointest Endosc. 2010; 72:284–291.
crossref
16. Tanaka A, Takada T, Kawarada Y, et al. Antimicrobial therapy for acute cholangitis: Tokyo Guidelines. J Hepatobiliary Pancreat Surg. 2007; 14:59–67.
crossref
17. Leung JW, Ling TK, Chan RC, et al. Antibiotics, biliary sepsis, and bile duct stones. Gastrointest Endosc. 1994; 40:716–721.
crossref
18. Shivaprakasha S, Harish R, Dinesh KR, Karim PM. Aerobic bacterial isolates from choledochal bile at a tertiary hospital. Indian J Pathol Microbiol. 2006; 49:464–467.
19. Lee WJ, Chang KJ, Lee CS, Chen KM. Surgery in cholangitis: bacteriology and choice of antibiotic. Hepatogastroenterology. 1992; 39:347–349.
20. Brook I. Aerobic and anaerobic microbiology of biliary tract disease. J Clin Microbiol. 1989; 27:2373–2375.
crossref
21. Capoor MR, Nair D, Rajni , et al. Microflora of bile aspirates in patients with acute cholecystitis with or without cholelithiasis: a tropical experience. Braz J Infect Dis. 2008; 12:222–225.
crossref
22. Lee JK, Park CW, Lee SH, et al. Updates in bacteriological epidemiology of community-acquired severe acute cholangitis and the effectiveness of metronidazole added routinely to the first-line antimicrobial regimen. J Infect Chemother. 2013; 19:1029–1034.
crossref
23. Mukaiya M, Hirata K, Katsuramaki T, et al. Isolated bacteria and susceptibilities to antimicrobial agents in biliary infections. Hepatogastroenterology. 2005; 52:686–690.
24. Karpel E, Madej A, Buł dak Ł, et al. Bile bacterial flora and its in vitro resistance pattern in patients with acute cholangitis resulting from choledocholithiasis. Scand J Gastroenterol. 2011; 46:925–930.
25. Thompson J, Bennion RS, Pitt HA. An analysis of infectious failures in acute cholangitis. HPB Surg. 1994; 8:139–144.
crossref
26. Karachalios GN, Nasiopoulou DD, Bourlinou PK, Reppa A. Treatment of acute biliary tract infections with ofloxacin: a randomized, controlled clinical trial. Int J Clin Pharmacol Ther. 1996; 34:555–557.
27. Hawkey PM, Jones AM. The changing epidemiology of resistance. J Antimicrob Chemother. 2009; 64(Suppl 1):i3–i10.
crossref
28. Wada K, Takada T, Kawarada Y, et al. Diagnostic criteria and severity assessment of acute cholangitis: Tokyo Guidelines. J Hepatobiliary Pancreat Surg. 2007; 14:52–58.
29. Jeon MH, Choi SH, Kwak YG, et al. Risk factors for the acquisition of carbapenem-resistant Escherichia coli among hospitalized patients. Diagn Microbiol Infect Dis. 2008; 62:402–406.
crossref
30. Falagas ME, Karageorgopoulos DE. Extended-spectrum be-ta-lactamase-producing organisms. J Hosp Infect. 2009; 73:345–354.
31. Desai TK, Tsang TK. Aminoglycoside nephrotoxicity in obstructive jaundice. Am J Med. 1988; 85:47–50.
crossref
32. Chamberland S, L'Ecuyer J, Lessard C, Bernier M, Provencher P, Bergeron MG. Antibiotic susceptibility profiles of 941 gram-negative bacteria isolated from septicemic patients throughout Canada. The Canadian Study Group. Clin Infect Dis. 1992; 15:615–628.
33. Keighley MR, Drysdale RB, Quoraishi AH, Burdon DW, Alexander- Willians J. Antibiotics in biliary disease: the relative importance of antibiotic concentrations in the bile and serum. Gut. 1976; 17:495–500.
crossref
34. Reckziegel R, Maguilnik I, Goldani LZ. Gentamicin concentration in bile after once-daily versus thrice-daily dosing of 4 mg/kg/day. J Antimicrob Chemother. 2001; 48:327–329.
crossref
35. Flores C, Maguilnik I, Hadlich E, Goldani LZ. Microbiology of choledochal bile in patients with choledocholithiasis admitted to a tertiary hospital. J Gastroenterol Hepatol. 2003; 18:333–336.
crossref
36. Neve R, Biswas S, Dhir V, et al. Bile cultures and sensitivity patterns in malignant obstructive jaundice. Indian J Gastroenterol. 2003; 22:16–18.
37. Chang WT, Lee KT, Wang SR, et al. Bacteriology and antimicrobial susceptibility in biliary tract disease: an audit of 10-year's experience. Kaohsiung J Med Sci. 2002; 18:221–228.
38. van den Hazel SJ, de Vries XH, Speelman P, et al. Biliary excretion of ciprofloxacin and piperacillin in the obstructed biliary tract. Antimicrob Agents Chemother. 1996; 40:2658–2660.
crossref
39. Leung JW, Chan RC, Cheung SW, Sung JY, Chung SC, French GL. The effect of obstruction on the biliary excretion of cefoperazone and ceftazidime. J Antimicrob Chemother. 1990; 25:399–406.
crossref
40. Gilbert DN, Moellering RC, Eliopoulos GM, et al. The Sanford guide to antimicrobial therapy guide. 38th ed.Sperryville: Antimicrobial Therapy Inc.;2008. p. 29.
41. Livermore DM. Defining an extended-spectrum beta-lacta-mase. Clin Microbiol Infect. 2008; 14(Suppl 1):3–10.
42. Harada S, Ishii Y, Yamaguchi K. Extended-spectrum beta-lacta-mases: implications for the clinical laboratory and therapy. Korean J Lab Med. 2008; 28:401–412.
43. Sung YK, Lee JK, Lee KH, Lee KT, Kang CI. The clinical epidemiology and outcomes of bacteremic biliary tract infections caused by antimicrobial-resistant pathogens. Am J Gastroenterol. 2012; 107:473–483.
crossref
44. Kogure H, Tsujino T, Yamamoto K, et al. Fever-based antibiotic therapy for acute cholangitis following successful endoscopic biliary drainage. J Gastroenterol. 2011; 46:1411–1417.
crossref

Fig. 1.
Study flow. Patients with acute cholangitis and biliary drainage were divided into groups according to time period and setting.
kjg-63-299f1.tif
Table 1.
Baseline Characteristics of the Study Subjects (n=1,596)
Characteristic Data
Age (yr) 68.3±13.8
Male 905 (56.7)
ALT (IU/L) 179.6±205.9
AST (IU/L) 185.9±239.8
ALP (IU/L) 594.3±510.8
GGT (IU/L) 395.1±439.6
Bilirubin (mg/dL) 7.1±32.9
CRP (mg/L) 59.76±76.8
Positive growth in blood 116 (14.1)
Positive growth in bile 1,513 (95.2)
Positive growth in both blood and bile 116 (7.6)
Concordant growth between blood and bile cultures 90 (77.6)
Causes of acute cholangitis  
 CBD+IHD stone 1,053 (66)
 Malignant tumor  
  Cholangiocarcinoma 215 (13.5)
  Pancreatic head cancer 59 (3.7)
  GB cancer 35 (2.2)
  AOV tumor 59 (3.7)
  Metastatic cancer 16 (1.0)
 Benign biliary stricture 29 (1.8)
 Others 130 (8.1)

Values are presented as mean±SD or n (%).

CBD, common bile duct; IHD, intrahepatic bile duct; GB, gallbladder;

AOV, ampulla of Vater.

Table 2.
Comparison of Baseline Characteristics between Period 1 and 2
Characteristic Period 1(n=645) Period 2(n=951) p-value
Age (yr) 69.3±13.8 68.62±13.8 0.914
Male 386 (59.8) 522 (54.9) 0.051
ALT (IU/L) 184.7±213.6 175.8±200.0 0.082
AST (IU/L) 178.1±214.9 191.0±254.7 0.144
ALP (IU/L) 593.1±505.5 598.2±521.2 0.803
GGT (IU/L) 394.2±381.0 396.7±475.2 0.458
Bilirubin (mg/dL) 8.64±45.52 6.04±19.8 0.016
CRP (mg/L) 59.3±68.6 60.2±80.9 0.175
Positive growth in blood 66 (19) 50 (10.4) 0.001
Positive growth in bile 621 (96.3) 899 (94.5) 0.120
Causes of acute cholangitis      
 CBD+IHD stone 417 (64.7) 636 (66.9) 0.361
 Malignant tumor      
  Cholangiocarcinoma 87 (13.5) 128 (13.5) 1.000
  Pancreatic head cancer 20 (3.1) 39 (4.1) 0.345
  GB cancer 14 (2.2) 21 (2.2) 1.000
  AOV tumor 22 (3.4) 37 (3.9) 0.686
  Metastatic cancer 10 (1.6) 6 (0.6) 0.078
 Benign biliary stricture 13 (2.0) 16 (1.7) 0.703
 Others 62 (9.6) 68 (7.2) 0.111

Values are presented as mean±SD or n (%).

CBD, common bile duct; IHD, intrahepatic bile duct; GB, gallbladder

AOV, ampulla of Vater.

Table 3.
Changes in Causative Pathogens and Their Antimicrobial Susceptibility over the Time Period of Six Years
Variable Culture(+) in period 1(n=621) Culture(+) in period 2(n=899) p-value Culture(+) in both (n=1,520)
Causative pathogen, n (%)        
 Gram-negative        
  E. coli 112 (19.4) 125 (14.6) 0.020 211 (13.2)
  ESBL-producing E. coli 210 (36.7) 362 (32.1) 0.073 485 (30.4)
  K. pneumoniae 37 (6.4) 65 (7.6) 0.405 99 (6.2)
  ESBL-producing K. pneumoniae 38 (6.6) 53 (6.2) 0.732 91 (5.7)
  Pseudomonas aeruginosa 41 (7.1) 37 (4.3) 0.024 72 (4.5)
  Citrobacter freundii 10 (1.7) 100 (13.2) 0.000 110 (6.9)
  Enterobacter cloacae 36 (6.3) 50 (6.2) 0.725 86 (5.4)
  Acinetobacter baumanii 21 (3.7) 16 (1.9) 0.036 37 (2.3)
Susceptible antimicrobial agent, n (%)        
 Aminoglycoside        
  Amikacin 293 (80.9) 515 (90) 0.000  
 Quinolone        
  Ciprofloxacin 185 (52.4) 204 (49.4) 0.426  
 Beta-lactams        
  Ampicillin 56 (18.1) 59 (12) 0.022  
  Piperacillin-tazobactam 219 (65.6) 348 (68.1) 0.455  
  Cefotetan 79 (55.6) 172 (74.8) 0.000  
  Ceftazidime 130 (53.9) 277 (49.7) 0.281  
  Cefepime 232 (64.3) 358 (62.3) 0.578  
  Imipenem 336 (93.3) 540 (93.9) 0.783  

ESBL, extended-spectrum beta-lactamase; E. coli, Escherichia coli; K. pneumoniae, Klebsiella pneumoniae.

Table 4.
Comparison of Baseline Characteristics between Community-acquired Cholangitis and Hospital-acquired Cholangitis
  Community-acquired cholangitis (n=1,397) Hospital-acquired cholangitis (n=199) p-value
Age (yr) 68.6±13.9 70.9±12.6 0.230
Male 799 (57.2) 109 (54.8) 0.541
ALT (IU/L) 181.6±206.0 125.1±188.6 0.133
AST (IU/L) 187.3±241.4 145.8±176.2 0.198
ALP (IU/L) 579.2±514.9 568.2±515.6 0.432
GGT (IU/L) 399.5±445.7 300.6±221.2 0.023
Bilirubin (mg/dL) 7.1±33.4 4.6±7.1 0.564
CRP (mg/L) 60.2±77.1 50.4±66.9 0.119
Positive growth in blood 112 (14.1) 47 (11.8) 1.000
Positive growth in bile 1,321 (94.6) 199 (100) 0.000
Causes of acute cholangitis      
 CBD+IHD stone 924 (66.3) 129 (64.2) 0.577
 Malignant tumor      
  Cholangiocarcinoma 182 (12.9) 33 (16.4) 0.183
  Pancreatic head cancer 52 (3.7) 7 (3.5) 1.000
  GB cancer 29 (2.1) 6 (3.0) 0.436
  AOV tumor 54 (3.9) 5 (2.5) 0.425
  Metastatic cancer 13 (0.9) 3 (1.5) 0.430
 Benign biliary stricture 26 (1.9) 3 (1.5) 0.703
 Others 117 (8.2) 13 (7.5) 0.784

Values are presented as mean±SD or n (%).

CBD, common bile duct; IHD, intrahepatic bile duct; GB, gallbladder; AOV, ampulla of Vater.

Table 5.
Comparison of Causative Pathogens and Their Antimicrobial Susceptibility between Community-acquired Cholangitis and Hospital-acquired Cholangitis
  Culture(+) in community-acquired cholangitis (n=1,321) Culture(+) in hospital-acquired cholangitis (n=199) p-value Culture(+) in both (n=1,520)
Causative pathogen, n (%)        
 Gram-negative        
  E. coli 226 (18.2) 11 (5.8) 0.000 211 (13.2)
  ESBL-producing E. coli 386 (31.2) 99 (52.1) 0.000 485 (30.4)
  K. pneumoniae 100 (8.0) 2 (1.1) 0.000 99 (6.2)
  ESBL-producing K. pneumoniae 77 (6.6) 14 (7.9) 0.546 91 (5.7)
  Pseudomonas aeruginosa 68 (5.5) 10 (5.3) 1.000 72 (4.5)
  Citrobacter freundii 84 (7.3) 26 (15.9) 0.001 110 (6.9)
  Enterobacter cloacae 77 (6.6) 9 (5.0) 0.424 86 (5.4)
  Acinetobacter baumanii 30 (2.4) 7 (3.8) 0.308 37 (2.3)
Susceptible antimicrobial agent, n (%)        
 Aminoglycoside        
  Amikacin 735 (86.9) 73 (83) 0.708  
 Quinolone        
  Ciprofloxacin 368 (52.7) 21 (30.9) 0.001  
 Beta-lactams        
  Ampicillin 112 (15.5) 3 (3.8) 0.003  
  Piperacillin-tazobactam 529 (69.2) 38 (47.5) 0.000  
  Cefotetan 232 (68.6) 19 (55.9) 0.178  
  Ceftazidime 394 (55.3) 13 (15.1) 0.000  
  Cefepime 556 (65.7) 34 (37.8) 0.000  
  Imipenem 79 (94.1) 82 (90.1) 0.168  

ESBL, extended-spectrum beta-lactamase; E. coli, Escherichia coli; K. pneumoniae, Klebsiella pneumoniae.

Table 6.
Comparison of Antimicrobial Susceptibility of Extended-spectrum Beta-lactamase-producing Escherichia coli between Period 1 and 2
Antimicrobial agent, n (%) ESBL(+) E. coli in period 1(n=210) ESBL(+) E. coli in period 2(n=362) p-value
Aminoglycoside      
 Amikacin 183 (86.3) 218 (80.1) 0.089
Quinolone      
 Ciprofloxacin 17 (8.1) 11 (5.0) 0.241
Beta-lactams      
 Ampicillin 3 (1.4) 3 (1.1) 1.000
 Piperacillin-tazobactam 181 (85.8) 169 (67.6) 0.000
 Cefotetan 88 (90.7) 164 (92.7) 0.644
 Ceftriaxone 2 (1.0) 4 (2.4) 0.421
 Cefepime 4 (1.9) 8 (2.9) 0.563
 Imipenem 208 (99.5) 272 (99.6) 1.000

ESBL, extended-spectrum beta-lactamase; E. coli, Escherichia coli.

Table 7.
Comparison of Antimicrobial Susceptibility of Extended-spectrum Beta-lactamase-producing E. coli between Community-acquired Cholangitis and Hospital-acquired Cholangitis
Antimicrobial agent, n (%) ESBL(+) E. coli in community-acquired cholangitis (n=386) ESBL(+) E. coli in hospital-acquired cholangitis (n=99) p-value
Aminoglycoside      
 Amikacin 318 (82.6) 83 (83.8) 0.881
Quinolone      
 Ciprofloxacin 25 (7.3) 3 (3.4) 0.231
Beta-lactams      
 Ampicillin 6 (1.6) 0 (0.0) 0.353
 Piperacillin-tazobactam 284 (77.2) 66 (71.0) 0.223
 Cefotetan 187 (91.7) 65 (92.9) 1.000
 Ceftriaxone 5 (1.8) 1 (1.2) 1.000
 Cefepime 11 (2.9) 1 (1.0) 0.474
 Imipenem 382 (99.7) 98 (99.0) 0.369

ESBL, extended-spectrum beta-lactamase; E. coli, Escherichia coli.

TOOLS
Similar articles