Journal List > Korean J Gastroenterol > v.62(6) > 1007168

Park and Lee: Role of Long Noncoding Ribonucleic Acid in Gastrointestinal Cancer

Abstract

With the improvement of high-throughput genomic technology such as microarray and next-generation sequencing over the last ten to twenty year, we have come to know that the portion of the genome responsible for protein coding constitutes just approximately 1.5%. The remaining 98.5% of the genome not responsible for protein coding have been regarded as ‘junk DNA'. More recently, however, ‘Encyclopedia of DNA elements project' revealed that most of the junk DNA were transcribed to RNA regardless of being translated into proteins. In addition, many reports support that a lot of these non-coding RNAs play a role in gene regulation. In fact, there are various functioning short non-coding RNAs including rRNA, tRNA, small interfering RNA, and micro RNA. Mechanisms of these RNAs are relatively well-known. Until recently, however, little is known about long non-coding RNAs which consist of 200 nucleotides or more. In this article, we will review the representative long non-coding RNAs which have been reported to be related to gastrointestinal cancers and to play a certain role in its pathogenesis.

References

1. Crick F. Central dogma of molecular biology. Nature. 1970; 227:561–563.
crossref
2. Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011; 43:904–914.
crossref
3. Kung JT, Colognori D, Lee JT. Long noncoding RNAs: past, present, and future. Genetics. 2013; 193:651–669.
crossref
4. Thomas CA Jr. The genetic organization of chromosomes. Annu Rev Genet. 1971; 5:237–256.
crossref
5. Gall JG. Chromosome structure and the C-value paradox. J Cell Biol. 1981; 91:3s–14s.
crossref
6. Ohno S. So much "junk" DNA in our genome. Brookhaven Symp Biol. 1972; 23:366–370.
7. de Koning AP, Gu W, Castoe TA, Batzer MA, Pollock DD. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet. 2011; 7:e1002384.
crossref
8. Gregory TR. Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol Rev Camb Philos Soc. 2001; 76:65–101.
crossref
9. Holmes DS, Mayfield JE, Sander G, Bonner J. Chromosomal RNA: its properties. Science. 1972; 177:72–74.
crossref
10. Pierpont ME, Yunis JJ. Localization of chromosomal RNA in human G-banded metaphase chromosomes. Exp Cell Res. 1977; 106:303–308.
crossref
11. Okazaki Y, Furuno M, Kasukawa T, et al. FANTOM Consortium; RIKEN Genome Exploration Research Group Phase I & II Team. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature. 2002; 420:563–573.
crossref
12. Rinn JL, Euskirchen G, Bertone P, et al. The transcriptional activity of human Chromosome 22. Genes Dev. 2003; 17:529–540.
crossref
13. Bertone P, Stolc V, Royce TE, et al. Global identification of human transcribed sequences with genome tiling arrays. Science. 2004; 306:2242–2246.
crossref
14. Ota T, Suzuki Y, Nishikawa T, et al. Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004; 36:40–45.
15. Carninci P, Kasukawa T, Katayama S, et al. FANTOM Consortium; RIKEN Genome Exploration Research Group and Genome Science Group (Genome Network Project Core Group). The transcriptional landscape of the mammalian genome. Science. 2005; 309:1559–1563.
16. Birney E, Stamatoyannopoulos JA, Dutta A, et al. ENCODE Project Consortium. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007; 447:799–816.
crossref
17. Kapranov P, St Laurent G, Raz T, et al. The majority of total nu-clear-encoded non-ribosomal RNA in a human cell is ‘dark matter’ un-annotated RNA. BMC Biol. 2010; 8:149.
crossref
18. Mercer TR, Gerhardt DJ, Dinger ME, et al. Targeted RNA sequencing reveals the deep complexity of the human transcriptome. Nat Biotechnol. 2011; 30:99–104.
crossref
19. Djebali S, Davis CA, Merkel A, et al. Landscape of transcription in human cells. Nature. 2012; 489:101–108.
20. Bernstein BE, Birney E, Dunham I, et al. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012; 489:57–74.
crossref
21. Xiao S, Scott F, Fierke CA, Engelke DR. Eukaryotic ribonuclease P: a plurality of ribonucleoprotein enzymes. Annu Rev Biochem. 2002; 71:165–189.
crossref
22. Henras AK, Dez C, Henry Y. RNA structure and function in C/D and H/ACA s(no)RNPs. Curr Opin Struct Biol. 2004; 14:335–343.
crossref
23. Okamura K, Lai EC. Endogenous small interfering RNAs in animals. Nat Rev Mol Cell Biol. 2008; 9:673–678.
crossref
24. Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 2009; 10:126–139.
crossref
25. Feuerhahn S, Iglesias N, Panza A, Porro A, Lingner J. TERRA biogenesis, turnover and implications for function. FEBS Lett. 2010; 584:3812–3818.
crossref
26. Blackburn EH, Collins K. Telomerase: an RNP enzyme synthe-sizes DNA. Cold Spring Harb Perspect Biol. 2011; 3:a003558.
crossref
27. Czech B, Hannon GJ. Small RNA sorting: matchmaking for Argonautes. Nat Rev Genet. 2011; 12:19–31.
crossref
28. Siomi MC, Sato K, Pezic D, Aravin AA. PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol. 2011; 12:246–258.
crossref
29. Schorderet P, Duboule D. Structural and functional differences in the long non-coding RNA hotair in mouse and human. PLoS Genet. 2011; 7:e1002071.
crossref
30. Maxmen A. RNA: the genome's rising stars. Nature. 2013; 496:127–129.
crossref
31. Cabili MN, Trapnell C, Goff L, et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 2011; 25:1915–1927.
crossref
32. Derrien T, Johnson R, Bussotti G, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012; 22:1775–1789.
crossref
33. Nagano T, Fraser P. No-nonsense functions for long noncoding RNAs. Cell. 2011; 145:178–181.
crossref
34. Guttman M, Rinn JL. Modular regulatory principles of large non-coding RNAs. Nature. 2012; 482:339–346.
crossref
35. Batista PJ, Chang HY. Long noncoding RNAs: cellular address codes in development and disease. Cell. 2013; 152:1298–1307.
crossref
36. Papait R, Kunderfranco P, Stirparo GG, Latronico MV, Condorelli G. Long noncoding RNA: a new player of heart failure? J Cardiovasc Transl Res. 2013. [Epub ahead of print].
crossref
37. Mohammad F, Mondal T, Kanduri C. Epigenetics of imprinted long noncoding RNAs. Epigenetics. 2009; 4:277–286.
crossref
38. Pandey RR, Mondal T, Mohammad F, et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell. 2008; 32:232–246.
crossref
39. Nagano T, Mitchell JA, Sanz LA, et al. The Air noncoding RNA epi-genetically silences transcription by targeting G9a to chromatin. Science. 2008; 322:1717–1720.
40. Pontier DB, Gribnau J. Xist regulation and function explored. Hum Genet. 2011; 130:223–236.
crossref
41. Azzalin CM, Reichenbach P, Khoriauli L, Giulotto E, Lingner J. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science. 2007; 318:798–801.
42. Redon S, Reichenbach P, Lingner J. The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Res. 2010; 38:5797–5806.
crossref
43. Porro A, Feuerhahn S, Reichenbach P, Lingner J. Molecular dissection of telomeric repeat-containing RNA biogenesis unveils the presence of distinct and multiple regulatory pathways. Mol Cell Biol. 2010; 30:4808–4817.
crossref
44. Flynn RL, Centore RC, O'Sullivan RJ, et al. TERRA and hnRNPA1 orchestrate an RPA-to-POT1 switch on telomeric single-strand-ed DNA. Nature. 2011; 471:532–536.
crossref
45. Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP. Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal. 2010; 3:ra8.
crossref
46. Plath K, Mlynarczyk-Evans S, Nusinow DA, Panning B. Xist RNA and the mechanism of X chromosome inactivation. Annu Rev Genet. 2002; 36:233–278.
crossref
47. Lee JT. The X as model for RNA's niche in epigenomic regulation. Cold Spring Harb Perspect Biol. 2010; 2:a003749.
crossref
48. Wutz A, Rasmussen TP, Jaenisch R. Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat Genet. 2002; 30:167–174.
crossref
49. Sun BK, Deaton AM, Lee JT. A transient heterochromatic state in Xist preempts X inactivation choice without RNA stabilization. Mol Cell. 2006; 3(21):617–628.
crossref
50. Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010; 464:1071–1076.
crossref
51. Khalil AM, Guttman M, Huarte M, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A. 2009; 106:11667–11672.
crossref
52. Good MC, Zalatan JG, Lim WA. Scaffold proteins: hubs for controlling the flow of cellular information. Science. 2011; 332:680–686.
crossref
53. Collins K. Physiological assembly and activity of human telomerase complexes. Mech Ageing Dev. 2008; 129:91–98.
crossref
54. Rinn JL, Kertesz M, Wang JK, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by non-coding RNAs. Cell. 2007; 129:1311–1323.
crossref
55. Tsai MC, Manor O, Wan Y, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science. 2010; 329:689–693.
crossref
56. Li CH, Chen Y. Targeting long non-coding RNAs in cancers: progress and prospects. Int J Biochem Cell Biol. 2013; 45:1895–1910.
crossref
57. Hibi K, Nakamura H, Hirai A, et al. Loss of H19 imprinting in esophageal cancer. Cancer Res. 1996; 56:480–482.
58. Lv XB, Lian GY, Wang HR, Song E, Yao H, Wang MH. Long non-coding RNA HOTAIR is a prognostic marker for esophageal squamous cell carcinoma progression and survival. PLoS One. 2013; 8:e63516.
crossref
59. Yang X, Song JH, Cheng Y, et al. Long non-coding RNA HNF1A-AS1 regulates proliferation and migration in oesophageal adenocarcinoma cells. Gut. 2013. [Epub ahead of print].
60. Wu W, Bhagat TD, Yang X, et al. Hypomethylation of noncoding DNA regions and overexpression of the long noncoding RNA, AFAP1-AS1, in Barrett's esophagus and esophageal adenocarcinoma. Gastroenterology. 2013; 144:956–966.
crossref
61. Yang F, Bi J, Xue X, et al. Up-regulated long non-coding RNA H19 contributes to proliferation of gastric cancer cells. FEBS J. 2012; 279:3159–3165.
crossref
62. Hajjari M, Behmanesh M, Sadeghizadeh M, Zeinoddini M. Upregulation of HOTAIR long non-coding RNA in human gastric adenocarcinoma tissues. Med Oncol. 2013; 30:670.
crossref
63. Xu ZY, Yu QM, Du YA, et al. Knockdown of long non-coding RNA HOTAIR suppresses tumor invasion and reverses epithelial-mesenchymal transition in gastric cancer. Int J Biol Sci. 2013; 9:587.
crossref
64. Yang F, Xue X, Bi J, et al. Long noncoding RNA CCAT1, which could be activated by c-Myc, promotes the progression of gastric carcinoma. J Cancer Res Clin Oncol. 2013; 139:437–445.
crossref
65. Sun M, Xia R, Jin F, et al. Downregulated long noncoding RNA MEG3 is associated with poor prognosis and promotes cell proliferation in gastric cancer. Tumour Biol. 2013. [Epub ahead of print].
crossref
66. Sun W, Wu Y, Yu X, et al. Decreased expression of long noncoding RNA AC096655.1–002 in gastric cancer and its clinical significance. Tumour Biol. 2013; 34:2697–2701.
crossref
67. Kogo R, Shimamura T, Mimori K, et al. Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res. 2011; 71:6320–6326.
crossref
68. Xu C, Yang M, Tian J, Wang X, Li Z. MALAT-1: a long non-coding RNA and its important 3' end functional motif in colorectal cancer metastasis. Int J Oncol. 2011; 39:169–175.
crossref
69. Nissan A, Stojadinovic A, Mitrani-Rosenbaum S, et al. Colon cancer associated transcript-1: a novel RNA expressed in malignant and premalignant human tissues. Int J Cancer. 2012; 130:1598–1606.
crossref
70. Kam Y, Rubinstein A, Naik S, et al. Detection of a long non-coding RNA (CCAT1) in living cells and human adenocarcinoma of colon tissues using FIT-PNA molecular beacons. Cancer Lett. 2013. [Epub ahead of print].
crossref
71. Ling H, Spizzo R, Atlasi Y, et al. CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome Res. 2013; 23:1446–1461.
crossref
72. Sana J, Hankeova S, Svoboda M, Kiss I, Vyzula R, Slaby O. Expression levels of transcribed ultraconserved regions uc.73 and uc.388 are altered in colorectal cancer. Oncology. 2012; 82:114–118.
73. Zhai H, Fesler A, Schee K, Fodstad O, Flatmark K, Ju J. Clinical Significance of Long Intergenic Noncoding RNA-p21 in Colorectal Cancer. Clin Colorectal Cancer. 2013; 12:261–266.
crossref
74. Ge X, Chen Y, Liao X, et al. Overexpression of long noncoding RNA PCAT-1 is a novel biomarker of poor prognosis in patients with colorectal cancer. Med Oncol. 2013; 30:588.
crossref
75. Qi P, Xu MD, Ni SJ, et al. Low expression of LOC285194 is associated with poor prognosis in colorectal cancer. J Transl Med. 2013; 11:122.
crossref
76. Panzitt K, Tschernatsch MM, Guelly C, et al. Characterization of HULC, a novel gene with striking upregulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology. 2007; 132:330–342.
crossref
77. Matouk IJ, Abbasi I, Hochberg A, Galun E, Dweik H, Akkawi M. Highly upregulated in liver cancer noncoding RNA is overexpressed in hepatic colorectal metastasis. Eur J Gastroenterol Hepatol. 2009; 21:688–692.
crossref
78. Geng YJ, Xie SL, Li Q, Ma J, Wang GY. Large intervening noncoding RNA HOTAIR is associated with hepatocellular carcinoma progression. J Int Med Res. 2011; 39:2119–2128.
crossref
79. Yang F, Zhang L, Huo XS, et al. Long noncoding RNA high expression in hepatocellular carcinoma facilitates tumor growth through enhancer of zeste homolog 2 in humans. Hepatology. 2011; 54:1679–1689.
crossref
80. Lai MC, Yang Z, Zhou L, et al. Long non-coding RNA MALAT-1 overexpression predicts tumor recurrence of hepatocellular carcinoma after liver transplantation. Med Oncol. 2012; 29:1810–1816.
crossref
81. Yuan SX, Yang F, Yang Y, et al. Long noncoding RNA associated with microvascular invasion in hepatocellular carcinoma promotes angiogenesis and serves as a predictor for hepatocellular carcinoma patients' poor recurrence-free survival after hepatectomy. Hepatology. 2012; 56:2231–2241.
crossref
82. Braconi C, Valeri N, Kogure T, et al. Expression and functional role of a transcribed noncoding RNA with an ultraconserved ele-ment in hepatocellular carcinoma. Proc Natl Acad Sci U S A. 2011; 108:786–791.
crossref
83. Kim K, Jutooru I, Chadalapaka G, et al. HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene. 2013; 32:1616–1625.
crossref
84. Tsai MC, Spitale RC, Chang HY. Long intergenic noncoding RNAs: new links in cancer progression. Cancer Res. 2011; 71:3–7.
85. Li D, Feng J, Wu T, et al. Long intergenic noncoding RNA HOTAIR is overexpressed and regulates PTEN methylation in laryngeal squamous cell carcinoma. Am J Pathol. 2013; 182:64–70.
crossref
86. Pachnis V, Belayew A, Tilghman SM. Locus unlinked to alpha-fe-toprotein under the control of the murine raf and Rif genes. Proc Natl Acad Sci U S A. 1984; 81:5523–5527.
crossref
87. Matouk IJ, DeGroot N, Mezan S, et al. The H19 non-coding RNA is essential for human tumor growth. PLoS One. 2007; 2:e845.
crossref
88. Matouk IJ, Mezan S, Mizrahi A, et al. The oncofetal H19 RNA connection: hypoxia, p53 and cancer. Biochim Biophys Acta. 2010; 1803:443–451.
crossref
89. Lin R, Roychowdhury-Saha M, Black C, et al. Control of RNA processing by a large non-coding RNA overexpressed in carcinomas. FEBS Lett. 2011; 585:671–676.
crossref
90. Guo F, Li Y, Liu Y, Wang J, Li Y, Li G. Inhibition of metastasis-associated lung adenocarcinoma transcript 1 in CaSki human cervical cancer cells suppresses cell proliferation and invasion. Acta Biochim Biophys Sin (Shanghai). 2010; 42:224–229.
crossref
91. Tano K, Mizuno R, Okada T, et al. MALAT-1 enhances cell motility of lung adenocarcinoma cells by influencing the expression of motility-related genes. FEBS Lett. 2010; 584:4575–4580.
crossref
92. Ying L, Chen Q, Wang Y, Zhou Z, Huang Y, Qiu F. Upregulated MALAT-1 contributes to bladder cancer cell migration by inducing epithelial-to-mesenchymal transition. Mol Biosyst. 2012; 8:2289–2294.
crossref
93. Schmidt LH, Spieker T, Koschmieder S, et al. The long noncoding MALAT-1 RNA indicates a poor prognosis in non-small cell lung cancer and induces migration and tumor growth. J Thorac Oncol. 2011; 6:1984–1992.
crossref
94. Gutschner T, Hämmerle M, Eissmann M, et al. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 2013; 73:1180–1189.
crossref
95. Wang J, Liu X, Wu H, et al. CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res. 2010; 38:5366–5383.
crossref
96. Du Y, Kong G, You X, et al. Elevation of highly upregulated in liver cancer (HULC) by hepatitis B virus X protein promotes hepatoma cell proliferation via down-regulating p18. J Biol Chem. 2012; 287:26302–26311.
crossref
97. Bejerano G, Pheasant M, Makunin I, et al. Ultraconserved elements in the human genome. Science. 2004; 304:1321–1325.
crossref

Table 1.
Long Noncoding RNAs Associated with Human Gastrointestinal Cancer
Source LncRNA Expression of lncRNA in cancer tissuea Associate clinical factor with high level of lncRNA Biological or molecular functions References
Esophageal cancer H19 Increased   Loss of imprinting 57
Esophageal cancer (squamous cell carcinoma) HOTAIR Increased Depth of invasion (↑), lymph node metastasis (↑), distant metastasis (↑), TNM stage (↑), poor differentiation (↑), poor prognosis (↑) Downregulation of HOTAIR: cell proliferation (↓), colony formation (↓), migration (↓) 58
Esophageal cancer (adenocarcinoma) HNF1A-AS1 Increased   Downregulation of HNF1A-AS1: cell proliferation (↓), anchorage-independent growth (↓), S-phase entry (↓), migration (↓), invasion (↓) 59
Esophageal cancer (adenocarcinoma) AFAP1-AS1 Increased   Downregulation of AFAP1-AS1: cell proliferation (↓), colony-forming ability (↓), migration (↓), invasion (↓) 60
Stomach cancer H19 Increased   Upregulation of H19: cell proliferation (↑) Downregulation of H19: cell apoptosis (↑) 61
Stomach cancer HOTAIR Increased Lymph node metastasis (↑), TNM stage (↑), poor prognosis (↑) Downregulation of HOTAIR: cell invasiveness (↓), reversion of epithelial-mesen-chymal transition (↑) 62,63
Stomach cancer CCAT1 Increased Depth of invasion (↑), lymph node metastasis (↑), distant metastasis (↑), CCAT1 expression: correlation with c-Myc Upregulation of CCAT1: cell proliferation (↑) & migration (↑) 64
Stomach cancer MEG3 Decreased Depth of invasion (↓), TNM stage (↓), tumor size (↓), poor prognosis (↓) Downregulation of MEG3: cell proliferation (↑) 65
Stomach cancer AC096655.1–002 Decreased Depth of invasion (↓), lymph node metastasis (↓), distant metastasis (↓), TNM stage (↓)   66
Colorectal cancer HOTAIR Increased Poor differentiation (↑), depth of invasion (↑), liver metastasis (↑), poor prognosis (↑) Upregulation of HOTAIR: invasion (↑) Downregulation of HOTAIR: invasion (↓) 67
Colorectal cancer MALAT-1     Upregulation of MALAT-1: cell proliferation (↑), invasion (↑) 68
Colorectal cancer CCAT1 Increased     69,70
Colorectal cancer CCAT2 Increasedb   Upregulation of CCAT2: migration (↑), metastasis (↑) 71
        Downregulation of CCAT2: invasion (↓) Upregulation of Myc, miR-17–5p, and miR-20a by CCAT2  
Colorectal cancer uc.73 Decreased Poor prognosis (↓)   72
Colorectal cancer uc.388 Decreased Proximal colon cancer (↑)   72
Colorectal cancer LincRNA-p21 Decreased Depth of invasion (↑), TNM stage (↑), vascular invasion (↑)   73
Colorectal cancer PCAT-1 Increased Distant metastasis (↑), poor prognosis (↑)   74
Colorectal cancer LOC285194 Decreased Tumor size (↓), distant metastasis (↓), TNM stage (↓), poor prognosis (↓)   75
Hepatocellular carcinoma HULC Increased Incidence of hepatitis B virus infection (↑) Downregulation of HULC: altered the expression of several hepatocellular carcinoma associated genes 76,77
Hepatocellular carcinoma HOTAIR Increased Lymph node metastasis (↑), poor prognosis (↑) Downregulation of HOTAIR: cell proliferation (↓), MMP-9 (↓), VEGF (↓) 78
Hepatocellular carcinoma LncRNA-HEIH Increased Cirrhosis (↓), poor prognosis (↑) Key role in G0/G1 arrest Associated with EZH2 79
Hepatocellular carcinoma MALAT-1 Increased Tumor number (↑), poor prognosis (↑) Downregulation of MALAT-1: cell viability (↓), motility (↓), invasion (↓), apoptosis (↑) 80
Hepatocellular carcinoma MVIH Increased Microvascular invasion (↑), TNM stage (↑), poor prognosis (↑) Upregulation of MVIH: tumor number (↑), intrahepatic metastasis (↑) 81
Hepatocellular carcinoma TUC338     Downregulation of TUC338: cell growth (↓) 82
Pancreatic cancer HOTAIR Increased   Downregulation of HOTAIR: cell proliferation (↓), invasion (↓), apoptosis (↑) 83

LncRNA, long non-coding RNA; TNM, tumor-node-metastasis; HOTAIR, HOX transcript antisense RNA; HNF1A-AS1, hepatic nuclear factor 1 alpha-antisense RNA 1; AFAP1-AS1, actin filament associated protein 1-antisense RNA 1; CCAT1, colon cancer-associated transcript; MEG3, maternally expressed gene 3; MALAT-1, metastasis associated lung adenocarcinoma transcript 1; CCAT2, colon cancer associated transcript-2; lincRNA-p21, long intergenic non-coding RNA-p21; PCAT-1, prostate cancer-associated non-coding RNA transcripts 1; HULC, highly up-regulated in liver cancer; MMP-9, matrix metalloproteinase-9; VEGF, vascular endothelial growth factor protein; lncRNA-HEIH, long non-coding RNA high expression in hepatocellular carcinoma; EZH2, enhancer of Zeste homolog 2; MVIH, long non-coding RNA associated with microvascular invasion in hepatocellular carcinoma; TUC338, transcript including uc.338.

a Expressions of long non-coding RNA in cancer tissue were compared with those in adjacent normal tissue.

b CCAT2 was increased in microsatellite stable tumors.

TOOLS
Similar articles