Journal List > Korean J Gastroenterol > v.62(4) > 1007142

Kim: Roles of Enteric Microbial Composition and Metabolism in Health and Diseases

Abstract

A complex microbiota colonizes mucosal layers in different regions of the human gut. In the healthy state, the microbial communities provide nutrients and energy to the host via fermentation of non-digestible dietary components in the large intestine. In contrast, they can play roles in inflammation and infection, including gastrointestinal diseases and metabolic syndrome such as obesity. However, because of the complexity of the microbial community, the functional connections between the enteric microbiota and metabolism are less well understood. Nevertheless, major progress has been made in defining dominant bacterial species, community profiles, and systemic characteristics that produce stable microbiota beneficial to health, and in identifying their roles in enteric metabolism. Through studies in both mice and humans, we are recently in a better position to understand what effect the enteric microbiota has on the metabolism by improving energy yield from food and modulating dietary components. Achieving better knowledge of this information may provide insights into new possibilities that reconstitution of enteric microbiota via diet can provide the maintenance of healthy state and therapeutic/preventive strategies against metabolic syndrome such as obesity. This review focuses on enteric microbial composition and metabolism on healthy and diseased states.

References

1. Kang JS. Journal walk regarding the expanding role of microbiota in our gut. J Bacteriol Virol. 2011; 41:63–64.
crossref
2. Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol. 2008; 6:776–788.
crossref
3. Booijink CC, El-aidy S, Rajilić-stojanović M, et al. High temporal and interindividual variation detected in the human ileal microbiota. Environ Microbiol. 2010; 12:3213–3227.
crossref
4. Zoetendal EG, Raes J, van den Bogert B, et al. The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME J. 2012; 6:1415–1426.
crossref
5. Hartman AL, Lough DM, Barupal DK, et al. Human gut microbiome adopts an alternative state following small bowel transplantation. Proc Natl Acad Sci U S A. 2009; 106:17187–17192.
crossref
6. Wang M, Ahrné S, Jeppsson B, Molin G. Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol Ecol. 2005; 54:219–231.
crossref
7. Duncan SH, Louis P, Thomson JM, Flint HJ. The role of pH in determining the species composition of the human colonic microbiota. Environ Microbiol. 2009; 11:2112–2122.
crossref
8. Walker AW, Duncan SH, McWilliam Leitch EC, Child MW, Flint HJ. pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl Environ Microbiol. 2005; 71:3692–3700.
crossref
9. Baughn AD, Malamy MH. The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen. Nature. 2004; 427:441–444.
crossref
10. Flint HJ, Duncan SH, Scott KP, Louis P. Interactions and com-petition within the microbial community of the human colon: links between diet and health. Environ Microbiol. 2007; 9:1101–1111.
crossref
11. Jones BV, Begley M, Hill C, Gahan CG, Marchesi JR. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc Natl Acad Sci U S A. 2008; 105:13580–13585.
crossref
12. Islam KB, Fukiya S, Hagio M, et al. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology. 2011; 141:1773–1781.
crossref
13. Gill CI, Rowland IR. Diet and cancer: assessing the risk. Br J Nutr. 2002; 88(Suppl 1):S73–S87.
crossref
14. Eggesbø M, Moen B, Peddada S, et al. Development of gut microbiota in infants not exposed to medical interventions. APMIS. 2011; 119:17–35.
crossref
15. Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010; 107:11971–11975.
crossref
16. Karlsson CL, Molin G, Cilio CM, Ahrné S. The pioneer gut microbiota in human neonates vaginally born at term-a pilot study. Pediatr Res. 2011; 70:282–286.
crossref
17. Biasucci G, Rubini M, Riboni S, Morelli L, Bessi E, Retetangos C. Mode of delivery affects the bacterial community in the newborn gut. Early Hum Dev. 2010; 86(Suppl 1):13–15.
crossref
18. Huurre A, Kalliomäki M, Rautava S, Rinne M, Salminen S, Isolauri E. Mode of delivery – effects on gut microbiota and humoral immunity. Neonatology. 2008; 93:236–240.
crossref
19. Fallani M, Young D, Scott J, et al. Intestinal microbiota of 6-week-old infants across Europe: geographic influence beyond delivery mode, breast-feeding, and antibiotics. J Pediatr Gastroenterol Nutr. 2010; 51:77–84.
crossref
20. Klaassens ES, Boesten RJ, Haarman M, et al. Mixed-species genomic microarray analysis of fecal samples reveals differential transcriptional responses of bifidobacteria in breast- and formula-fed infants. Appl Environ Microbiol. 2009; 75:2668–2676.
crossref
21. Harmsen HJ, Wildeboer-veloo AC, Raangs GC, et al. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr. 2000; 30:61–67.
crossref
22. Roger LC, Mccartney AL. Longitudinal investigation of the faecal microbiota of healthy full-term infants using fluorescence in situ hybridization and denaturing gradient gel electrophoresis. Microbiology. 2010; 156:3317–3328.
crossref
23. Kurokawa K, Itoh T, Kuwahara T, et al. Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res. 2007; 14:169–181.
crossref
24. Martín R, Jiménez E, Heilig H, et al. Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl Environ Microbiol. 2009; 75:965–969.
crossref
25. Solís G, de Los Reyes-Gavilan CG, Fernández N, Margolles A, Gueimonde M. Establishment and development of lactic acid bacteria and bifidobacteria microbiota in breast-milk and the infant gut. Anaerobe. 2010; 16:307–310.
crossref
26. Magne F, Abély M, Boyer F, Morville P, Pochart P, Suau A. Low species diversity and high interindividual variability in faeces of preterm infants as revealed by sequences of 16S rRNA genes and PCR-temporal temperature gradient gel electrophoresis profiles. FEMS Microbiol Ecol. 2006; 57:128–138.
crossref
27. Favier CF, Vaughan EE, De Vos WM, Akkermans AD. Molecular monitoring of succession of bacterial communities in human neonates. Appl Environ Microbiol. 2002; 68:219–226.
crossref
28. Fallani M, Amarri S, Uusijarvi A, et al. INFABIO team. Determinants of the human infant intestinal microbiota after the introduction of first complementary foods in infant samples from five European centres. Microbiology. 2011; 157(Pt 5):1385–1392.
crossref
29. Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature. 2012; 486:222–227.
crossref
30. Martin R, Nauta AJ, Ben Amor K, Knippels LM, Knol J, Garssen J. Early life: gut microbiota and immune development in infancy. Benef Microbes. 2010; 1:367–382.
crossref
31. Kalliomäki M, Isolauri E. Pandemic of atopic diseases–a lack of microbial exposure in early infancy? Curr Drug Targets Infect Disord. 2002; 2:193–199.
32. Penders J, Thijs C, van den Brandt PA, et al. Gut microbiota composition and development of atopic manifestations in infancy: the KOALA Birth Cohort Study. Gut. 2007; 56:661–667.
crossref
33. O'Toole PW, Claesson MJ. Gut microbiota: changes throughout the lifespan from infancy to elderly. Int Dairy J. 2010; 20:281–291.
34. Woodmansey EJ. Intestinal bacteria and ageing. J Appl Microbiol. 2007; 102:1178–1186.
crossref
35. Claesson MJ, Cusack S, O'Sullivan O, et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A. 2011; 108(Suppl 1):4586–4591.
crossref
36. Bae JW. Recent methodological approaches to human microbiome. J Bacteriol Virol. 2011; 41:1–7.
crossref
37. Kim HS. Our genome and our other genome: understanding humans as symbionts with microbes. J Bacteriol Virol. 2012; 42:101–107.
crossref
38. Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012; 489:242–249.
crossref
39. Flint HJ. Obesity and the gut microbiota. J Clin Gastroenterol. 2011; 45(Suppl):S128–S132.
crossref
40. Flint HJ, Scott KP, Louis P, Duncan SH. The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol. 2012; 9:577–589.
crossref
41. Tap J, Mondot S, Levenez F, et al. Towards the human intestinal microbiota phylogenetic core. Environ Microbiol. 2009; 11:2574–2584.
crossref
42. Walker AW, Ince J, Duncan SH, et al. Dominant and diet-re-sponsive groups of bacteria within the human colonic microbiota. ISME J. 2011; 5:220–230.
crossref
43. De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010; 107:14691–14696.
crossref
44. Kim W. Application of metagenomic techniques: understanding the unrevealed human microbiota and explaining the in clinical infectious diseases. J Bacteriol Virol. 2012; 42:263–275.
crossref
45. Blaser MJ, Kirschner D. The equilibria that allow bacterial persistence in human hosts. Nature. 2007; 449:843–849.
crossref
46. Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011; 334:105–108.
crossref
47. Roberfroid M, Gibson GR, Hoyles L, et al. Prebiotic effects: metabolic and health benefits. Br J Nutr. 2010; 104(Suppl 2):S1–S63.
crossref
48. Davis LM, Martínez I, Walter J, Goin C, Hutkins RW. Barcoded pyrosequencing reveals that consumption of galactooligosa-ccharides results in a highly specific bifidogenic response in humans. PLoS One. 2011; 6:e25200.
crossref
49. Ramirez-Farias C, Slezak K, Fuller Z, Duncan A, Holtrop G, Louis P. Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br J Nutr. 2009; 101:541–550.
50. Gill SR, Pop M, Deboy RT, et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006; 312:1355–1359.
crossref
51. Louis P, Scott KP, Duncan SH, Flint HJ. Understanding the effects of diet on bacterial metabolism in the large intestine. J Appl Microbiol. 2007; 102:1197–1208.
crossref
52. Van Wey AS, Cookson AL, Roy NC, McNabb WC, Soboleva TK, Shorten PR. Bacterial biofilms associated with food particles in the human large bowel. Mol Nutr Food Res. 2011; 55:969–978.
crossref
53. Leitch EC, Walker AW, Duncan SH, Holtrop G, Flint HJ. Selective colonization of insoluble substrates by human faecal bacteria. Environ Microbiol. 2007; 9:667–679.
crossref
54. Ze X, Duncan SH, Louis P, Flint HJ. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J. 2012; 6:1535–1543.
crossref
55. Walker AW, Duncan SH, Harmsen HJ, Holtrop G, Welling GW, Flint HJ. The species composition of the human intestinal microbiota differs between particle-associated and liquid phase communities. Environ Microbiol. 2008; 10:3275–3283.
crossref
56. Martens EC, Koropatkin NM, Smith TJ, Gordon JI. Complex gly-can catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm. J Biol Chem. 2009; 284:24673–24677.
crossref
57. Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA. Polysacchar-ide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol. 2008; 6:121–131.
crossref
58. van Passel MW, Kant R, Zoetendal EG, et al. The genome of Akkermansia muciniphila, a dedicated intestinal mucin de-grader, and its use in exploring intestinal metagenomes. PLoS One. 2011; 6:e16876.
59. Derrien M, Van Baarlen P, Hooiveld G, Norin E, Müller M, de Vos WM. Modulation of mucosal immune response, tolerance, and proliferation in mice colonized by the mucin-degrader Akkermansia muciniphila. Front Microbiol. 2011; 2:166.
crossref
60. Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes. 2012; 3:289–306.
crossref
61. Sleeth ML, Thompson EL, Ford HE, Zac-Varghese SE, Frost G. Free fatty acid receptor 2 and nutrient sensing: a proposed role for fibre, fermentable carbohydrates and short-chain fatty acids in appetite regulation. Nutr Res Rev. 2010; 23:135–145.
crossref
62. Gassull MA. Review article: the intestinal lumen as a therapeutic target in inflammatory bowel disease. Aliment Pharmacol Ther. 2006; 24(Suppl 3):90–95.
crossref
63. Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther. 2008; 27:104–119.
crossref
64. Lewis SJ, Heaton KW. Increasing butyrate concentration in the distal colon by accelerating intestinal transit. Gut. 1997; 41:245–251.
crossref
65. Scheppach W. Effects of short chain fatty acids on gut morphology and function. Gut. 1994; 35(1 Suppl):S35–S38.
crossref
66. Gao Z, Yin J, Zhang J, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009; 58:1509–1517.
crossref
67. Louis P, Young P, Holtrop G, Flint HJ. Diversity of human colonic butyrate-producing bacteria revealed by analysis of the bu-tyryl-CoA:acetate CoA-transferase gene. Environ Microbiol. 2010; 12:304–314.
crossref
68. Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett. 2009; 294:1–8.
crossref
69. Aminov RI, Walker AW, Duncan SH, Harmsen HJ, Welling GW, Flint HJ. Molecular diversity, cultivation, and improved detection by fluorescent in situ hybridization of a dominant group of human gut bacteria related to Roseburia spp. or Eubacte-rium rectale. Appl Environ Microbiol. 2006; 72:6371–6376.
70. Ramsay AG, Scott KP, Martin JC, Rincon MT, Flint HJ. Cell-associated alpha-amylases of butyrate-producing Firmicute bacteria from the human colon. Microbiology. 2006; 152(Pt 11):3281–3290.
71. Scott KP, Martin JC, Chassard C, et al. Substrate-driven gene expression in Roseburia inulinivorans: importance of inducible enzymes in the utilization of inulin and starch. Proc Natl Acad Sci U S A. 2011; 108(Suppl 1):4672–4679.
crossref
72. Lopez-Siles M, Khan TM, Duncan SH, Harmsen HJ, Garcia-Gil LJ, Flint HJ. Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pec-tin, uronic acids, and host-derived substrates for growth. Appl Environ Microbiol. 2012; 78:420–428.
crossref
73. Brinkworth GD, Noakes M, Clifton PM, Bird AR. Comparative effects of very low-carbohydrate, high-fat and high-carbohydrate, low-fat weight-loss diets on bowel habit and faecal short-chain fatty acids and bacterial populations. Br J Nutr. 2009; 101:1493–1502.
crossref
74. Duncan SH, Belenguer A, Holtrop G, Johnstone AM, Flint HJ, Lobley GE. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol. 2007; 73:1073–1078.
crossref
75. Russell WR, Gratz SW, Duncan SH, et al. High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am J Clin Nutr. 2011; 93:1062–1072.
crossref
76. El Oufir L, Flourié B, Bruley des Varannes S, et al. Relations between transit time, fermentation products, and hydrogen con-suming flora in healthy humans. Gut. 1996; 38:870–877.
crossref
77. McOrist AL, Miller RB, Bird AR, et al. Fecal butyrate levels vary widely among individuals but are usually increased by a diet high in resistant starch. J Nutr. 2011; 141:883–889.
crossref
78. Duncan SH, Louis P, Flint HJ. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol. 2004; 70:5810–5817.
crossref
79. Belenguer A, Duncan SH, Holtrop G, Anderson SE, Lobley GE, Flint HJ. Impact of pH on lactate formation and utilization by human fecal microbial communities. Appl Environ Microbiol. 2007; 73:6526–6533.
crossref
80. Belenguer A, Holtrop G, Duncan SH, et al. Rates of production and utilization of lactate by microbial communities from the human colon. FEMS Microbiol Ecol. 2011; 77:107–119.
crossref
81. Bourriaud C, Robins RJ, Martin L, et al. Lactate is mainly fermented to butyrate by human intestinal microfloras but interindividual variation is evident. J Appl Microbiol. 2005; 99:201–212.
crossref
82. Morrison DJ, Mackay WG, Edwards CA, Preston T, Dodson B, Weaver LT. Butyrate production from oligofructose fermentation by the human faecal flora: what is the contribution of extracellular acetate and lactate? Br J Nutr. 2006; 96:570–577.
83. Vernia P, Caprilli R, Latella G, Barbetti F, Magliocca FM, Cittadini M. Fecal lactate and ulcerative colitis. Gastroenterology. 1988; 95:1564–1568.
crossref
84. Smith EA, Macfarlane GT. Enumeration of amino acid fermenting bacteria in the human large intestine: effects of pH and starch on peptide metabolism and dissimilation of amino acids. FEMS Microbiol Ecol. 1998; 25:355–368.
crossref
85. Macfarlane S, Macfarlane GT. Regulation of short-chain fatty acid production. Proc Nutr Soc. 2003; 62:67–72.
crossref
86. Medani M, Collins D, Docherty NG, Baird AW, O'Connell PR, Winter DC. Emerging role of hydrogen sulfide in colonic physiology and pathophysiology. Inflamm Bowel Dis. 2011; 17:1620–1625.
crossref
87. Attene-Ramos MS, Wagner ED, Plewa MJ, Gaskins HR. Evidence that hydrogen sulfide is a genotoxic agent. Mol Cancer Res. 2006; 4:9–14.
crossref
88. Kim JM. Inflammatory bowel diseases and enteric microbiota. Korean J Gastroenterol. 2010; 55:4–18.
crossref
89. Marquet P, Duncan SH, Chassard C, Bernalier-Donadille A, Flint HJ. Lactate has the potential to promote hydrogen sulphide formation in the human colon. FEMS Microbiol Lett. 2009; 299:128–134.
crossref
90. Sahakian AB, Jee SR, Pimentel M. Methane and the gastrointestinal tract. Dig Dis Sci. 2010; 55:2135–2143.
crossref
91. Rey FE, Faith JJ, Bain J, et al. Dissecting the in vivo metabolic potential of two human gut acetogens. J Biol Chem. 2010; 285:22082–22090.
crossref
92. Nava GM, Carbonero F, Croix JA, Greenberg E, Gaskins HR. Abundance and diversity of mucosa-associated hydro-genotrophic microbes in the healthy human colon. ISME J. 2012; 6:57–70.
crossref
93. Possemiers S, Bolca S, Verstraete W, Heyerick A. The intestinal microbiome: a separate organ inside the body with the metabolic potential to influence the bioactivity of botanicals. Fitoterapia. 2011; 82:53–66.
crossref
94. McIntosh FM, Maison N, Holtrop G, et al. Phylogenetic distribution of genes encoding β-glucuronidase activity in human colonic bacteria and the impact of diet on faecal glycosidase activities. Environ Microbiol. 2012; 14:1876–1887.
crossref
95. Gloux K, Berteau O, El Oumami H, Béguet F, Leclerc M, Doré J. A metagenomic β-glucuronidase uncovers a core adaptive function of the human intestinal microbiome. Proc Natl Acad Sci U S A. 2011; 108(Suppl 1):4539–4546.
crossref
96. Wikoff WR, Anfora AT, Liu J, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A. 2009; 106:3698–3703.
crossref
97. Na HN, Nam JH. Infectobesity: a new area for microbiological and virological research. J Bacteriol Virol. 2011; 41:65–76.
crossref
98. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006; 444:1027–1031.
crossref
99. Blaut M, Klaus S. Intestinal microbiota and obesity. Handb Exp Pharmacol. 2012; (209):251–273.
crossref
100. Roberfroid MB. Caloric value of inulin and oligofructose. J Nutr. 1999; 129(7 Suppl):1436S–1437S.
crossref
101. Parnell JA, Reimer RA. Prebiotic fibres dose-dependently increase satiety hormones and alter Bacteroidetes and Firmi-cutes in lean and obese JCR:LA-cp rats. Br J Nutr. 2012; 107:601–613.
crossref
102. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006; 444:1022–1023.
103. Schwiertz A, Taras D, Schäfer K, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring). 2010; 18:190–195.
crossref
104. Duncan SH, Lobley GE, Holtrop G, et al. Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes (Lond). 2008; 32:1720–1724.
crossref
105. Bäckhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004; 101:15718–15723.
106. Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology. 2009; 137:1716–1724.
crossref
107. Murphy EF, Cotter PD, Healy S, et al. Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut. 2010; 59:1635–1642.
crossref
108. Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009; 1:6ra14.
crossref
109. Vijay-Kumar M, Aitken JD, Carvalho FA, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010; 328:228–231.
crossref
110. Fleissner CK, Huebel N, Abd El-Bary MM, Loh G, Klaus S, Blaut M. Absence of intestinal microbiota does not protect mice from diet-induced obesity. Br J Nutr. 2010; 104:919–929.
crossref
111. Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia ini-tiates obesity and insulin resistance. Diabetes. 2007; 56:1761–1772.
112. Stephen AM, Wiggins HS, Cummings JH. Effect of changing transit time on colonic microbial metabolism in man. Gut. 1987; 28:601–609.
crossref
113. Cani PD, Delzenne NM. Gut microflora as a target for energy and metabolic homeostasis. Curr Opin Clin Nutr Metab Care. 2007; 10:729–734.
crossref
114. Caesar R, Reigstad CS, Bäckhed HK, et al. Gut-derived lipopolysaccharide augments adipose macrophage accumulation but is not essential for impaired glucose or insulin tolerance in mice. Gut. 2012; 61:1701–1707.
crossref
115. Creely SJ, McTernan PG, Kusminski CM, et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab. 2007; 292:E740–E747.
crossref
116. Amar J, Burcelin R, Ruidavets JB, et al. Energy intake is associated with endotoxemia in apparently healthy men. Am J Clin Nutr. 2008; 87:1219–1223.
crossref
117. Erridge C, Attina T, Spickett CM, Webb DJ. A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am J Clin Nutr. 2007; 86:1286–1292.
crossref
118. Ghoshal S, Witta J, Zhong J, de Villiers W, Eckhardt E. Chylomicrons promote intestinal absorption of lipopolysa-ccharides. J Lipid Res. 2009; 50:90–97.
crossref
119. Wei X, Yang Z, Rey FE, et al. Fatty acid synthase modulates intestinal barrier function through palmitoylation of mucin 2. Cell Host Microbe. 2012; 11:140–152.
crossref
120. Koh YS. Nucleic acid recognition and signaling by toll-like receptor 9: compartment-dependent regulation. J Bacteriol Virol. 2011; 41:131–132.
crossref
121. Yuk JM, Jo EK. Toll-like receptors and innate immunity. J Bacteriol Virol. 2011; 41:225–235.
crossref
122. Saberi M, Woods NB, de Luca C, et al. Hematopoietic cell-specific deletion of toll-like receptor 4 ameliorates hepatic and adipose tissue insulin resistance in high-fat-fed mice. Cell Metab. 2009; 10:419–429.
crossref
123. Kim JM. Inflammatory bowel diseases and inflammasome. Korean J Gastroenterol. 2011; 58:300–310.
crossref
124. Vandanmagsar B, Youm YH, Ravussin A, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med. 2011; 17:179–188.
crossref
125. Elinav E, Strowig T, Kau AL, et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell. 2011; 145:745–757.
crossref
126. Henao-Mejia J, Elinav E, Jin C, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 2012; 482:179–185.
crossref
127. Stecher B, Robbiani R, Walker AW, et al. Salmonella enterica se-rovar typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol. 2007; 5:2177–2189.
crossref
128. Jernberg C, Löfmark S, Edlund C, Jansson JK. Longterm impacts of antibiotic exposure on the human intestinal microbiota. Microbiology. 2010; 156(Pt 11):3216–3223.
crossref
129. Sokol H, Seksik P, Furet JP, et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis. 2009; 15:1183–1189.
crossref
130. Willing B, Halfvarson J, Dicksved J, et al. Twin studies reveal specific imbalances in the mucosa-associated microbiota of patients with ileal Crohn's disease. Inflamm Bowel Dis. 2009; 15:653–660.
crossref
131. Manichanh C, Borruel N, Casellas F, Guarner F. The gut microbiota in IBD. Nat Rev Gastroenterol Hepatol. 2012; 9:599–608.
crossref
132. Sokol H, Pigneur B, Watterlot L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A. 2008; 105:16731–16736.
133. Jia W, Whitehead RN, Griffiths L, et al. Is the abundance of Faecalibacterium prausnitzii relevant to Crohn's disease? FEMS Microbiol Lett. 2010; 310:138–144.
134. Mukhopadhya I, Hansen R, El-Omar EM, Hold GL. IBD-what role do Proteobacteria play? Nat Rev Gastroenterol Hepatol. 2012; 9:219–230.
crossref
135. Chassard C, Dapoigny M, Scott KP, et al. Functional dysbiosis within the gut microbiota of patients with constipated-irritable bowel syndrome. Aliment Pharmacol Ther. 2012; 35:828–838.
crossref
136. Rajilić-Stojanović M, Biagi E, Heilig HG, et al. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology. 2011; 141:1792–1801.
crossref
137. Ko JS. The intestinal microbiota and human disease. Korean J Gastroenterol. 2013; 62:85–91.
crossref
138. Boleij A, Tjalsma H. Gut bacteria in health and disease: a survey on the interface between intestinal microbiology and colorectal cancer. Biol Rev Camb Philos Soc. 2012; 87:701–730.
crossref
139. Wang T, Cai G, Qiu Y, et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 2012; 6:320–329.
crossref
140. Borody TJ, Khoruts A. Fecal microbiota transplantation and emerging applications. Nat Rev Gastroenterol Hepatol. 2011; 9:88–96.
crossref
141. Guo B, Harstall C, Louie T, Veldhuyzen van Zanten S, Dieleman LA. Systematic review: faecal transplantation for the treatment of Clostridium difficile-associated disease. Aliment Pharmacol Ther. 2012; 35:865–875.
142. Mattila E, Uusitalo-Seppälä R, Wuorela M, et al. Fecal transplantation, through colonoscopy, is effective therapy for recurrent Clostridium difficile infection. Gastroenterology. 2012; 142:490–496.
143. Khoruts A, Dicksved J, Jansson JK, Sadowsky MJ. Changes in the composition of the human fecal microbiome after bacter-iotherapy for recurrent Clostridium difficile-associated diarrhea. J Clin Gastroenterol. 2010; 44:354–360.

Fig. 1.
Energy intake and fermentation of non-digestible carbohydrates by intestinal microbiota in large intestine. Each gram of glucose that is directly absorbed from the small intestine contributes approximately 3.9 kcal to energy intake. Non-digestible carbohydrates that are resistant to digestion in the small intestine contribute energy indirectly as a result of microbial fermentation in the colon to produce short-chain fatty acids (SCFA) and gases. This contribution to the body's energy intake is approximately 1.5 kcal/g glucose because of the lower energy content of SCFA and their incomplete absorption from the colon. Fermentability depends primarily on the structure of the substrate. However, it may be influenced by methods of food preparation and storage, by host physiology, by gut transit, and potentially by the density and species composition of the intestinal microbiota. Fermentation of non-dige-stible carbohydrates by anaerobic bacteria in the large intestine enables the recovery of only a fraction of the initial energy content for microbial growth. SCFA such as butyrate, acetate, and propionate are absorbed in the colon and butyrate provides energy for intestinal epithelial cells (IECs). Acetate and propionate reach the liver and peripheral organs where they are substrates for gluconeogenesis and lipogenesis.
kjg-62-191f1.tif
TOOLS
Similar articles