Journal List > J Korean Acad Nurs > v.48(2) > 1003303

Kang, Kim, Park, Kim, and Lee: Latent Class Analysis of Gambling Activities among Korean Adolescents

Abstract

Purpose

The aim of this study is to identify the types of gambling among adolescents and provide basic prevention information regarding adolescents’ gambling problems.

Methods

Secondary data from representative national survey on 2015 Youth Gambling Problems of Korea Center on Gambling Problems were used. Using latent class analysis (LCA), 13 gambling types such as offline and online games of 14,011 adolescents were classified, and gambling experiences and characteristics were analyzed.

Results

The subgroups of adolescent gambling were identified as four latent classes: a rare group (84.5% of the sample), a risk group (1.0%), an offline group (11.9%), and an expanded group (2.6%). The types and characteristics of gambling among the latent classes differed. In the risk group, adolescents participated in online illegal sports betting and internet casino, and gambling time, gambling expenses, and the number of gambling types were higher than other groups.

Conclusion

Gambling frequently occur among adolescent, and the subtypes of gambling did not reveal homogeneous characteristics. In order to prevent adolescent gambling problems, it is a necessary to develop tailored prevention intervention in the nursing field, which is appropriate to the characteristics of adolescent gambling group and can help with early identification.

References

1. US National Research Council. Pathological gambling: A critical review. Washington, DC: National Academy Press;1999. p. 16.
2. Korea Center on Gambling Problems. Implementation plan for prevention of community based gambling problem. Seoul: Korea Center on Gambling Problems;2017. Apr. Report No.: Research-17-02.
3. Korea Center on Gambling Problems. White paper on gambling problems management2016. Seoul: Korea Center on Gambling Problems;2017. p. 29.
4. Lee HK, Chung SK, Cho KH, Choi SW, Kim HS, Lee IH, et al. 100 Misconceptions and truths about addiction: Version 2. Seoul: Korean Addiction Forum;2017. p. 176.
5. Gupta R, Derevensky JL. Adolescents with gambling problems: From research to treatment. Journal of Gambling Studies. 2000; 16(2-3):315–342. https://doi.org/10.1023/A:1009493200768.
6. The National Gambling Control Commission, Korea Center on Gambling Problems. Survey on 2015 youth gambling problem. Seoul: Korea Center on Gambling Problems;2015. Dec. Report No.: Research-15-05.
7. Volberg RA, Gupta R, Griffiths MD, Olason DT, Delfabbro P. An international perspective on youth gambling prevalence studies. International Journal of Adolescent Medicine and Health. 2010; 22(1):3–38. https://doi.org/10.1515/IJAMH.2010.22.1.3.
8. Jiménez-Murcia S, Alvarez-Moya EM, Stinchfield R, Fernán-dez-Aranda F, Granero R, Aymamí N, et al. Age of onset in pathological gambling: Clinical, therapeutic and personality correlates. Journal of Gambling Studies. 2010; 26(2):235–248. https://doi.org/10.1007/s10899-009-9175-3.
crossref
9. Yip SW, Desai RA, Steinberg MA, Rugle L, Cavallo DA, Krishnan-Sarin S, et al. Health/functioning characteristics, gambling behaviors, and gambling-related motivations in adolescents stratified by gambling problem severity: Findings from a high school survey. The American Journal on Addictions. 2011; 20(6):495–508. https://doi.org/10.1111/j.1521-0391.2011.00180.x.
crossref
10. Hume M, Mort GS. Fun, friend, or foe: Youth perceptions and definitions of online gambling. Social Marketing Quarterly. 2011; 17(1):109–133. https://doi.org/10.1080/15245004.2010.546939.
crossref
11. Calado F, Alexandre J, Griffiths MD. Prevalence of adolescent problem gambling: A systematic review of recent research. Journal of Gambling Studies. 2017; 33(2):397–424. https://doi.org/10.1007/s10899-016-9627-5.
crossref
12. Boldero JM, Bell RC, Moore SM. Do gambling activity patterns predict gambling problems? A latent class analysis of gambling forms among Australian youth. International Gambling Studies. 2010; 10(2):151–163. https://doi.org/10.1080/14459795.2010.501808.
crossref
13. Studer J, Baggio S, Mohler-Kuo M, Simon O, Daeppen JB, Gmel G. Latent class analysis of gambling activities in a sample of young swiss men: Association with gambling problems, substance use outcomes, personality traits and coping strategies. Journal of Gambling Studies. 2016; 32(2):421–440. https://doi.org/10.1007/s10899-015-9547-9.
crossref
14. Lynch WJ, Maciejewski PK, Potenza MN. Psychiatric cor- relates of gambling in adolescents and young adults grouped by age at gambling onset. Archives of General Psychiatry. 2004; 61(11):1116–1122. https://doi.org/10.1001/archpsyc.61.11.1116.
15. Hong YH, Choi SH. A study on the cause of internet gambling and action plan [Internet]. Seoul: Korean Institute of Criminology;c2011. [cited 2017 Aug 15]. Available from:. http://www.ndsl.kr/ndsl/commons/util/ndslOriginalView.do?dbt=TRKO&cn=TRKO201600012483&rn=&url=&pageCode=PG06.
16. Korean National Police Agency: Korean Police Crime Statistics in 2016 [Internet]. Seoul: Korean National Police Agency;c2017. [cited 2017 Dec 9]. Available from:. http://www.police.go.kr/files/infodata/200141/2016/2016_01.pdf.
17. Kwon SJ, Kim KH, Seong HG, Rhee MK, Kang SG. Illegal internet gambling: Problems, risk factors, and prevention strategies. Korean Journal of Health Psychology. 2007; 12(1):1–19. https://doi.org/10.17315/kjhp.2007.12.1.001.
18. Ryu HG, Choi YS, Jang HK, Kim JE. A study on the characteristics of youth gambling addiction. The Korean Journal of Health Service Management. 2012; 6(1):153–161. https://doi.org/10.12811/kshsm.2012.6.1.153.
crossref
19. Chang JY. Types of gambling and factors influencing adolescent gambling behavior. Mental Health & Social Work. 2011; 6:348–381.
20. Collins LM, Lanza ST. Latent class and latent transition analysis: With applications in the social, behavioral, and health sciences [Internet]. Hoboken (NJ): John Wiley & Sons;c2010. [cited 2017 Nov 1]. Available from:. http://onlinelibrary.wiley.com/book/10.1002/9780470567333.
21. Goodman LA. Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika. 1974; 61(2):215–231. https://doi.org/10.1093/biomet/61.2.215.
crossref
22. Lanza ST, Rhoades BL. Latent class analysis: An alternative perspective on subgroup analysis in prevention and treatment. Prevention Science. 2013; 14(2):157–168. https://doi.org/10.1007/s11121-011-0201-1.
crossref
23. Luigi ND, Gibertoni D, Randon E, Scorcu AE. Patterns of gambling activities and gambling problems among Italian high school students: Results from a latent class analysis. Journal of Gambling Studies. 2017; 1–21. https://doi.org/10.1007/s10899-017-9694-2.
24. Vachon DD, Bagby MR. Pathological gambling subtypes. Psychological Assessment. 2009; 21(4):608–615. https://doi.org/10.1037/a0016846.
crossref
25. Welte JW. Barnes GM, Wieczorek WF, Tidwell MO, Hoffman JH. Type of gambling and availability as risk factors for problem gambling: A tobit regression analysis by age and gender. International Gambling Studies. 2007; 7(2):183–198. https://doi.org/10.1080/14459790701387543.
26. Kim SW, Shin JH. Comparison of illegal lottery cases in Korea and foreign countries. Journal of Korean Public Police and Security Studies. 2017; 14(1):23–48. https://doi.org/10.25023/kapsa.14.1.201705.23.
27. Welte JW. Barnes GM, Tidwell M-CO, Hoffman JH. The association of form of gambling with problem gambling among American youth. Psychology of Addictive Behaviors. 2009; 23(1):105–112. https://doi.org/10.1037/a0013536.
28. Shin HJ, Kim JC. Major issues and tasks for gambling disorder in adolescents: Focusing on a controversy over speculation in doll drawing game. Korean Association of Addiction Crime Review. 2017; 7(2):59–80.
29. Kessler RC, Hwang I, LaBrie R, Petukhova M, Sampson NA, Winters KC, et al. DSM-IV pathological gambling in the National Comorbidity Survey Replication. Psychological Medicine. 2008; 38(9):1351–1360. https://doi.org/10.1017/S0033291708002900.
crossref
30. Cook S, Turner N, Paglia-Boak A, Adlaf EM. Mann RE. Ontario youth gambling report: Data from the 2009 Ontario student drug use and health survey [Internet]. Toronto: Problem Gambling Institute of Ontario;c2010. [cited 2017 Nov 19]. Available from:. http://www.ontla.on.ca/library/repository/mon/24011/305877.pdf.

Figure 1.
Youth gambling type by latent classes.
jkan-48-232f1.tif
Table 1.
Description of the Study Population
Item Frequency (n=14,011) Percentag (100.0%) M±SD
Gender
   Male 7,349 52.5
   Female 6,662 47.5
Age 14.96±1.43
Home region
   Capital 2,357 16.8
   Metropolitan 3,664 26.1
   Province 7,990 57.1
School year
   Middle school 1 2,346 16.7
   Middle school 2 2,670 19.1
   Middle school 3 3,020 21.6
   High school 1 2,974 21.2
   High school 2 3,001 21.4
Lifetime gambling behavior experience
   Yes 5,895 42.1
   No 8,116 57.9
First onset of gambling 12.12±2.71
Number of gambling behavior 0.53±1.22
3 month gambling behavior experience
   Yes 3,393 24.2
   No 10,618 75.8
Gambling of significant others
   Yes 2,216 15.8
   No 8,724 62.3
   Don’t know 3,071 21.9
Nearby gambling place
   Yes 1,123 8.0
   No 8,742 62.4
   Don’t know 4,146 29.6

M±SD=Mean±standard deviation.

The number of samples to which weights are applied after parameter estimation.

Table 2.
Model Fit Indices of the Latent Class Analysis Solutions
Model AIC BIC Entropy LMR-LRT p
1 classes 53,839.45 53,937.57
2 classes 43,047.84 43,251.63 0.89 10,819.61 <.001
3 classes 41,968.80 42,278.25 0.89 1,107.04 <.001
4 classes 41,748.91 42,164.03 0.86 247.89 <.001
5 classes 41,628.34 42,149.12 0.87 147.32 .290

AIC=Akaike’s Information Criterion; BIC=Bayesian Information Criterion; LCA=Latent Class Analysis; LMR-LRT=Lo Mendel Rubin Likelihood Ratio Test.

p value for the k versus k-1 class solution.

Table 3.
Comparisons among Gambling Subclasses of the Latent Classes Analysis
Item Class 1 (84.5%) Class 2 (1.0%) Class 3 (11.9%) Class 4 (2.6%) χ2/F p
n (%) or M±SD n (%) or M±SD n (%) or M±SD n (%) or M±SD
Gender
   Male 5,980 (50.5) 118 (86.8) 1,001 (60.0) 250 (68.3) 165.83 <.001
   Female 5,628 (49.5) 18 (13.2) 668 (40.0) 116 (31.7)
Age (yr) 14.94±1.49a) 15.64±1.31b) 15.13±1.41a) 14.98±1.48a) 12.10 <.001
Home region
   Capital 2,044 (17.3) 13 (9.6) 250 (15.0) 50 (13.7) 14.06 .029
   Metropolitan 3,092 (26.1) 38 (27.9) 439 (26.3) 95 (26.0)
   Province 6,703 (56.6) 85 (62.5) 981 (58.7) 221 (60.3)
First onset of 12.09±2.79a) 13.72±2.61b) 12.66±2.68a) 12.56±2.54a) 20.22 <.001
   gambling (yr)
First pattern of gambling
   Offline 3,618 (97.2) 88 (64.7) 1,531 (91.7) 332 (90.7) 315.94 <.001
   Online 106 (2.8) 48 (35.3) 139 (8.3) 34 (9.3)
Frequent pattern of gambling
   Offline 1,216 (99.6) 70 (51.5) 1,510 (90.4) 323 (88.3) 330.09 <.001
   Online 5 (0.4) 66 (48.5) 132 (9.6) 43 (11.7)
Frequency of gambling (times/week)
   ≤1 1,192 (97.6) 104 (75.9) 1,516 (90.8) 328 (89.6) 123.57 <.001
   2~6 29 (2.4) 25 (18.3) 132 (7.9) 30 (8.2)
   7 0 (0.0) 8 (5.8) 21 (1.3) 8 (2.2)
Number of 0.10±0.30a) 6.61±2.35d) 2.12±0.76b) 4.71±0.81c) 27,355.91 <.001
   gambling behavior
Time used for 21.36±32.20a) 94.59±99.39d) 42.33±52.52b) 55.31±72.48c) 13.11 <.001
   gambling (minute)
Money spent on 4,987.03±14,624.59a) 220,670.11±60,635.01b ) 15,320.73±2,560.73a) 117,209.74±46,421.52a) 75.32 <.001
   gambling (won)
Money lost by 3,761.29±16,790.16a) 88,817.73±28,034.38b) 8,013.07±50,901.05a) 113,330.06±64,092.05a) 49.49 <.001
   gambling (won)
Money won by 11,462.10±89,029.36a) 253,538.12±50,786.11b ) 24,745.49±3,657.89a) 23,687.53±2,385.33a) 111.99 <.001
   betting (won)
Gambling of significant others
Yes 1,531 (12.9) 76 (55.9) 465 (27.9) 144 (39.3) 598.69 <.001
No 7,704 (65.1) 34 (25.0) 849 (50.9) 137 (37.3)
Do not know 2,604 (22.0) 26 (19.1) 355 (21.2) 86 (23.4)
Nearby gambling place 40.19 <.001
   Yes 888 (7.5) 23 (16.8) 165 (9.9) 46 (12.6)
   No 7,434 (62.8) 77 (56.2) 1,030 (61.7) 202 (55.2)
Do not know 3,517 (29.7) 37 (27.0) 474 (28.4) 118 (32.2)

M±SD=Mean±standard deviation.

*Except for missing factors, the total number of cases is different.

Fisher’s exact test.

a)~d)Scheffe’s test (mean with the other letter significantly different).

TOOLS
Similar articles