1. Lee JG, Jun S, Cho YW, Lee H, Kim GB, Seo JB, et al. Deep learning in medical imaging: general overview. Korean J Radiol. 2017; 18:570–584. PMID:
28670152.

2. Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural networks: an overview and application in radiology. Insights Imaging. 2018; 9:611–629. PMID:
29934920.

3. Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, et al. Deep learning: a primer for radiologists. Radiographics. 2017; 37:2113–2131. PMID:
29131760.

4. Choy G, Khalilzadeh O, Michalski M, Do S, Samir AE, Pianykh OS, et al. Current applications and future impact of machine learning in radiology. Radiology. 2018; 288:318–328. PMID:
29944078.

5. SFR-IA Group. CERF. French Radiology Community. Artificial intelligence and medical imaging 2018: French Radiology Community white paper. Diagn Interv Imaging. 2018; 99:727–742. PMID:
30470627.
6. Greaves F, Joshi I, Campbell M, Roberts S, Patel N, Powell J. What is an appropriate level of evidence for a digital health intervention? Lancet. 2019; 392:2665–2667. PMID:
30545779.

7. Maddox TM, Rumsfeld JS, Payne PRO. Questions for artificial intelligence in health care. JAMA. 2019; 321:31–32. PMID:
30535130.

8. Shortliffe EH, Sepu´lveda MJ. Clinical decision support in the era of artificial intelligence. JAMA. 2018; 320:2199–2200. PMID:
30398550.

9. Tang A, Tam R, Cadrin-Chênevert A, Guest W, Chong J, Barfett J, et al. Canadian Association of Radiologists (CAR) Artificial Intelligence Working Group. Canadian Association of Radiologists white paper on artificial intelligence in radiology. Can Assoc Radiol J. 2018; 69:120–135. PMID:
29655580.

10. Park SH, Do KH, Choi JI, Sim JS, Yang DM, Eo H, et al. Principles for evaluating the clinical implementation of novel digital healthcare devices. J Korean Med Assoc. 2018; 61:765–775.

11. Park SH, Kressel HY. Connecting technological innovation in artificial intelligence to real-world medical practice through rigorous clinical validation: what peer-reviewed medical journals could do. J Korean Med Sci. 2018; 33:e152. PMID:
29805337.

12. Park SH, Han K. Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology. 2018; 286:800–809. PMID:
29309734.
13. Fryback DG, Thornbury JR. The efficacy of diagnostic imaging. Med Decis Making. 1991; 11:88–94. PMID:
1907710.

14. England JR, Cheng PM. Artificial intelligence for medical image analysis: a guide for authors and reviewers. AJR Am J Roentgenol. 2018; 12. 17. [Epub ahead of print]. DOI:
10.2214/AJR.18.20490.

15. Park SH. Diagnostic case-control versus diagnostic cohort studies for clinical validation of artificial intelligence algorithm performance. Radiology. 2019; 290:272–273. PMID:
30511912.

16. Zech JR, Badgeley MA, Liu M, Costa AB, Titano JJ, Oermann EK. Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study. PLoS Med. 2018; 15:e1002683. PMID:
30399157.

17. Ting DSW, Cheung CY, Lim G, Tan GSW, Quang ND, Gan A, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA. 2017; 318:2211–2223. PMID:
29234807.

18. Li X, Zhang S, Zhang Q, Wei X, Pan Y, Zhao J, et al. Diagnosis of thyroid cancer using deep convolutional neural network models applied to sonographic images: a retrospective, multicohort, diagnostic study. Lancet Oncol. 2019; 20:193–201. PMID:
30583848.

19. Nsoesie EO. Evaluating artificial intelligence applications in clinical settings. JAMA Netw Open. 2018; 1:e182658. PMID:
30646173.

20. Zou J, Schiebinger L. AI can be sexist and racist - it's time to make it fair. Nature. 2018; 559:324–326. PMID:
30018439.

21. Gianfrancesco MA, Tamang S, Yazdany J, Schmajuk G. Potential biases in machine learning algorithms using electronic health record data. JAMA Intern Med. 2018; 178:1544–1547. PMID:
30128552.

22. AlBadawy EA, Saha A, Mazurowski MA. Deep learning for segmentation of brain tumors: impact of cross-institutional training and testing. Med Phys. 2018; 45:1150–1158. PMID:
29356028.

23. The Lancet. Is digital medicine different? Lancet. 2018; 392:95. PMID:
30017135.
24. AI diagnostics need attention. Nature. 2018; 555:285.
25. Luo W, Phung D, Tran T, Gupta S, Rana S, Karmakar C, et al. Guidelines for developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view. J Med Internet Res. 2016; 18:e323. PMID:
27986644.

26. Rutjes AW, Reitsma JB, Vandenbroucke JP, Glas AS, Bossuyt PM. Case-control and two-gate designs in diagnostic accuracy studies. Clin Chem. 2005; 51:1335–1341. PMID:
15961549.

27. Gill J, Prasad V. Improving observational studies in the era of big data. Lancet. 2018; 392:716–717. PMID:
30191816.

28. Korevaar DA, Hooft L, Askie LM, Barbour V, Faure H, Gatsonis CA, et al. Facilitating prospective registration of diagnostic accuracy studies: a STARD initiative. Clin Chem. 2017; 63:1331–1341. PMID:
28630237.

29. Kang JH, Kim DH, Park SH, Baek JH. Age of data in contemporary research articles published in representative general radiology journals. Korean J Radiol. 2018; 19:1172–1178. PMID:
30386148.

30. INFANT Collaborative Group. Computerised interpretation of fetal heart rate during labour (INFANT): a randomised controlled trial. Lancet. 2017; 389:1719–1729. PMID:
28341515.