Journal List > J Rheum Dis > v.18(4) > 1063923

Ji, Kim, Lee, Na, Choi, Lee, and Song: Integrated Analysis of MicroRNA and mRNA Expression Profiles in Rheumatoid Arthritis Synovial Monocytes

Abstract

Objective

MicroRNAs (miRNAs) play important roles in many biological processes and recent studies have provided growing evidences that miRNA dysregulation might play important roles in the pathogenesis of rheumatoid arthritis (RA). The aim of this study was to investigate the contribution of miRNAs to altered gene expressions in RA.

Methods

To investigate whether the differential expression of miRNA in RA could account for the altered expression of certain genes, we compared the different expressions of miRNAs and mRNAs in rheumatoid synovial fluid monocytes with that of normal peripheral blood (PB) monocytes by using a gene expression oligonucleotide microarray and a microRNA microarray.

Results

Comparative analysis of the mRNA profiles showed significant different expressions of 430 genes in RA synovial monocytes, of which 303 (70%) were upregulated and 127 (30%) were downregulated, as compared with that of normal PB monocytes. Out of differentially expressed 13 miRNAs, 9 miRNAs were upregulated and 4 miRNAs were downregulated in the RA synovial monocytes. A total of 62 genes were predicted as target genes of the 13 differentially expressed miRNAs in the RA synovial monocytes. Among the 62 miRNA-targeted genes, a few genes such as GSTM1, VIPR1, PADI4, CDA, IL21R, CCL5, IL7R, STAT4, HTRA1 and IL18BP have been reported to be associated with RA.

Conclusion

In the present study, we observed that several miRNAs are differentially expressed in RA synovial monocytes, and we suggest that these different expressions of miRNAs may regulate the expression of several genes associated with the pathogenesis of RA.

References

1. Sonkoly E, Pivarcsi A. Advances in microRNAs: implications for immunity and inflammatory diseases. J Cell Mol Med. 2009; 13:24–38.
crossref
2. Lindsay MA. microRNAs and the immune response. Trends Immunol. 2008; 29:343–51.
crossref
3. Brennan FM, McInnes IB. Evidence that cytokines play a role in rheumatoid arthritis. J Clin Invest. 2008; 118:3537–45.
crossref
4. Jing Q, Huang S, Guth S, Zarubin T, Motoyama A, Chen J, et al. Involvement of microRNA in AU-rich ele-ment-mediated mRNA instability. Cell. 2005; 120:623–34.
crossref
5. Tili E, Michaille JJ, Cimino A, Costinean S, Dumitru CD, Adair B, et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to en-dotoxin shock. J Immunol. 2007; 179:5082–9.
6. Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A. 2006; 103:12481–6.
7. Nakasa T, Miyaki S, Okubo A, Hashimoto M, Nishida K, Ochi M, et al. Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum. 2008; 58:1284–92.
crossref
8. Stanczyk J, Pedrioli DM, Brentano F, Sanchez-Pernaute O, Kolling C, Gay RE, et al. Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum. 2008; 58:1001–9.
crossref
9. Pauley KM, Satoh M, Chan AL, Bubb MR, Reeves WH, Chan EK. Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res Ther. 2008; 10:R101.
crossref
10. Berezikov E, Thuemmler F, van Laake LW, Kondova I, Bontrop R, Cuppen E, et al. Diversity of microRNAs in human and chimpanzee brain. Nat Genet. 2006; 38:1375–7.
crossref
11. Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, et al. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 2003; 13:2129–41.
crossref
12. Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature. 2008; 455:64–71.
crossref
13. Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature. 2008; 455:58–63.
crossref
14. Mattey DL, Hassell AB, Plant M, Dawes PT, Ollier WR, Jones PW, et al. Association of polymorphism in glutathione S-transferase loci with susceptibility and outcome in rheumatoid arthritis: comparison with the shared epitope. Ann Rheum Dis. 1999; 58:164–8.
crossref
15. Yun BR, El-Sohemy A, Cornelis MC, Bae SC. Glutathione S-transferase M1, T1, and P1 genotypes and rheumatoid arthritis. J Rheumatol. 2005; 32:992–7.
16. Delgado M, Robledo G, Rueda B, Varela N, O'Valle F, Hernandez-Cortes P, et al. Genetic association of vasoactive intestinal peptide receptor with rheumatoid arthritis: altered expression and signal in immune cells. Arthritis Rheum. 2008; 58:1010–9.
crossref
17. Juarranz Y, Gutié rrez-Cañas I, Santiago B, Carrión M, Pablos JL, Gomariz RP. Differential expression of vasoactive intestinal peptide and its functional receptors in human osteoarthritic and rheumatoid synovial fibroblasts. Arthritis Rheum. 2008; 58:1086–95.
crossref
18. Anzilotti C, Pratesi F, Tommasi C, Migliorini P. Peptidylarginine deiminase 4 and citrullination in health and disease. Autoimmun Rev. 2010; 9:158–60.
crossref
19. Proost P, Loos T, Mortier A, Schutyser E, Gouwy M, Noppen S, et al. Citrullination of CXCL8 by peptidylarginine deiminase alters receptor usage, prevents proteolysis, and dampens tissue inflammation. J Exp Med. 2008; 205:2085–97.
crossref
20. Paira S, Roverano S, Rillo O, Barrionuevo A, Mahieu S, Millen N. Cytidine deaminase in polymyalgia rheumatica and elderly onset rheumatoid arthritis. Clin Rheumatol. 2005; 24:460–3.
crossref
21. Jüngel A, Distler JH, Kurowska-Stolarska M, Seemayer CA, Seibl R, Forster A, et al. Expression of interleukin-21 receptor, but not interleukin-21, in synovial fibroblasts and synovial macrophages of patients with rheumatoid arthritis. Arthritis Rheum. 2004; 50:1468–76.
crossref
22. Li J, Shen W, Kong K, Liu Z. Interleukin-21 induces T-cell activation and proinflammatory cytokine secretion in rheumatoid arthritis. Scand J Immunol. 2006; 64:515–22.
crossref
23. Stanczyk J, Kowalski ML, Grzegorczyk J, Szkudlinska B, Jarzebska M, Marciniak M, et al. RANTES and chemo-tactic activity in synovial fluids from patients with rheumatoid arthritis and osteoarthritis. Mediators Inflamm. 2005; 2005; 343–8.
crossref
24. Hartgring SA, van Roon JA, Wenting-van Wijk M, Jacobs KM, Jahangier ZN, Willis CR, et al. Elevated expression of interleukin-7 receptor in inflamed joints mediates interleukin-7-induced immune activation in rheumatoid arthritis. Arthritis Rheum. 2009; 60:2595–605.
crossref
25. Walker JG, Ahern MJ, Coleman M, Weedon H, Papangelis V, Beroukas D, et al. Expression of Jak3, STAT1, STAT4, and STAT6 in inflammatory arthritis: unique Jak3 and STAT4 expression in dendritic cells in seropositive rheumatoid arthritis. Ann Rheum Dis. 2006; 65:149–56.
crossref
26. Remmers EF, Plenge RM, Lee AT, Graham RR, Hom G, Behrens TW, et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med. 2007; 357:977–86.
27. Grau S, Richards PJ, Kerr B, Hughes C, Caterson B, Williams AS, et al. The role of human HtrA1 in arthritic disease. J Biol Chem. 2006; 281:6124–9.
crossref
28. Bresnihan B, Roux-Lombard P, Murphy E, Kane D, FitzGerald O, Dayer JM. Serum interleukin 18 and interleukin 18 binding protein in rheumatoid arthritis. Ann Rheum Dis. 2002; 61:726–9.
crossref
29. Ji JD, Lee WJ, Kong KA, Woo JH, Choi SJ, Lee YH, et al. Association of STAT4 polymorphism with rheumatoid arthritis and systemic lupus erythematosus: a meta-analysis. Mol Biol Rep. 2010; 37:141–7.
crossref
30. Nakamachi Y, Kawano S, Takenokuchi M, Nishimura K, Sakai Y, Chin T, et al. MicroRNA-124a is a key regulator of proliferation and monocyte chemoattractant protein 1 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis Rheum. 2009; 60:1294–304.
crossref
31. Alsaleh G, Suffert G, Semaan N, Juncker T, Frenzel L, Gottenberg JE, et al. Bruton's tyrosine kinase is involved in miR-346-related regulation of IL-18 release by lip-opolysaccharide-activated rheumatoid fibroblast-like synoviocytes. J Immunol. 2009; 182:5088–97.
crossref
32. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, et al. A mammalian microRNA expression at-las based on small RNA library sequencing. Cell. 2007; 129:1401–14.
crossref
33. Ro S, Park C, Young D, Sanders KM, Yan W. Tissue-de-pendent paired expression of miRNAs. Nucleic Acids Res. 2007; 35:5944–53.
crossref
34. Chang X, Yamada R, Suzuki A, Sawada T, Yoshino S, Tokuhiro S, et al. Localization of peptidylarginine deiminase 4 (PADI4) and citrullinated protein in synovial tissue of rheumatoid arthritis. Rheumatology (Oxford). 2005; 44:40–50.
crossref
35. Harney SM, Meisel C, Sims AM, Woon PY, Wordsworth BP, Brown MA. Genetic and genomic studies of PADI4 in rheumatoid arthritis. Rheumatology (Oxford). 2005; 44:869–72.
crossref
36. Chang X, Zhao Y, Sun S, Zhang Y, Zhu Y. The expression of PADI4 in synovium of rheumatoid arthritis. Rheumatol Int. 2009; 29:1411–6.
crossref
37. Loos T, Mortier A, Gouwy M, Ronsse I, Put W, Lenaerts JP, et al. Citrullination of CXCL10 and CXCL11 by peptidylarginine deiminase: a naturally occurring posttranslational modification of chemokines and new dimension of immunoregulation. Blood. 2008; 112:2648–56.
crossref
38. Xu X, Hsu HC, Chen J, Grizzle WE, Chatham WW, Stockard CR, et al. Increased expression of activation-induced cytidine deaminase is associated with anti-CCP and rheumatoid factor in rheumatoid arthritis. Scand J Immunol. 2009; 70:309–16.
crossref
39. Calin GA, Croce CM. MicroRNAs and chromosomal ab-normalities in cancer cells. Oncogene. 2006; 25:6202–10.
crossref
40. Lionetti M, Biasiolo M, Agnelli L, Todoerti K, Mosca L, Fabris S, et al. Identification of microRNA expression patterns and definition of a microRNA/mRNA regulatory network in distinct molecular groups of multiple myeloma. Blood. 2009; 114:e20–6.
crossref
41. Androulidaki A, Iliopoulos D, Arranz A, Doxaki C, Schworer S, Zacharioudaki V, et al. The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs. Immunity. 2009; 31:220–31.
crossref

Figure 1.
Hierarchical clustering of microRNA expression profile between RA synovial monocytes (RA1-RA6) and normal PB monocytes.
jrd-18-253f1.tif
Figure 2.
Validation of the differentially expressed genes and miRNAs in the RA synovial monocytes. The array data for mRNAs (A) and miRNAs (B) was validated by performing quantitative real-time PCR on the normal peripheral blood monocytes from four healthy donors and the rheumatoid arthritis synovial fluid monocytes from twelve patients (RA1-RA12). The data is shown as means± SD. ∗p<0.05.
jrd-18-253f2.tif
Table 1.
Clinical and demographic features of the study patients with rheumatoid arthritis
Patients Sex Age (years) Disease duration (years) ESR (mm/hr) CRP (mg/l) Medications
RA1 F 57 1 97 3.72 MTX, PD
RA2 F 53 14 77 5.5 MTX, TAC
RA3 F 33 1 47 2.2 MTX
RA4 F 31 7 No data No data PD
RA5 F 67 9 72 1.47 MTX, CYC
RA6 F 31 7 39 0.43 MTX, LEF
RA7 F 69 1 68 1.2 MTX, LEF
RA8 F 65 20 81 1.7 REM
RA9 F 64 2 117 4.6 MTX, SSZ
RA10 M 64 2 69 5.4 MTX, LEF
RA11 F 32 9 52 3.77 SSZ, PD
RA12 F 34 2 87 4.1 MTX, HCQ, SSZ

MTX: methotrexate, PD: prednisolone, TAC: tacrolimus, CYC: cyclosporin, LEF: leflunomide, REM: remicade, SSZ: sulfasalazine, HCQ: hydroxychloroquine

Table 2.
Inverse relationship between microRNA and the target mRNA expression identified in the RA synovial monocytes (upregulated microRNAs)
MicroRNA Gene symbol Gene name MicroRNA fold change mRNA fold change
hsa-let-7e CD33 CD33 molecule (CD33), transcript variant 1, mRNA. 2.68 -2.37
  TRAF3IP3 TRAF3 interacting protein 3 (TRAF3IP3), mRNA.   -2.93
  PISD Phosphatidylserine decarboxylase (PISD), mRNA.   -2.06
  CD300LF CD300 molecule-like family member f (CD300LF), mRNA.   -2.08
hsa-miR-125a-3p NME3 Non-metastatic cells 3, protein expressed in (NME3), mRNA. 3.81 -2.04
  TRAF3IP3 TRAF3 interacting protein 3 (TRAF3IP3), mRNA.   -2.93
  VIPR1 Vasoactive intestinal peptide receptor 1 (VIPR1), mRNA.   -3.52
  GSTM2 Glutathione S-transferase M2 (muscle) (GSTM2), mRNA.   -6.95
  GSTM1 Glutathione S-transferase M1 (GSTM1), transcript variant 1, mRNA.   -5.13
hsa-miR-155 IL11RA Interleukin 11 receptor, alpha (IL11RA), transcript variant 1, mRNA. 8.90 -2.21
  TESC Tescalcin (TESC), mRNA.   -3.64
  SCPEP1 Serine carboxypeptidase 1 (SCPEP1), mRNA.   -2.13
  TRAF3IP3 TRAF3 interacting protein 3 (TRAF3IP3), mRNA.   -2.93
  CD52 CD52 molecule (CD52), mRNA.   -3.03
hsa-miR-34a IL11RA Interleukin 11 receptor, alpha (IL11RA), transcript variant 1, mRNA. 4.11 -2.21
  NME3 Non-metastatic cells 3, protein expressed in (NME3), mRNA.   -2.04
  CDA Cytidine deaminase (CDA), mRNA.   -2.89
  ZNF467 Zinc finger protein 467 (ZNF467), mRNA.   -2.28
  TRAF3IP3 TRAF3 interacting protein 3 (TRAF3IP3), mRNA.   -2.93
  PADI4 Peptidyl arginine deiminase, type IV (PADI4), mRNA.   -20.95
hsa-miR-34a CSTA Cystatin A (stefin A) (CSTA), mRNA. 7.48 -3.24
  NFE2 Nuclear factor (erythroid-derived 2), 45kDa (NFE2), mRNA.   -3.74
  CD33 CD33 molecule (CD33), transcript variant 1, mRNA.   -2.37
  SCPEP1 Serine carboxypeptidase 1 (SCPEP1), mRNA.   -2.13
  CD300LF CD300 molecule-like family member f (CD300LF), mRNA.   -2.08
  GSTM2 Glutathione S-transferase M2 (muscle) (GSTM2), mRNA.   -6.95
hsa-miR-511 C14orf159 Chromosome 14 open reading frame 159 (C14orf159), mRNA. 17.72 -2.11
  ALDH1A1 Aldehyde dehydrogenase 1 family, member A1 (ALDH1A1), mRNA.   -2.80
  GSTM2 Glutathione S-transferase M2 (muscle) (GSTM2), mRNA.   -6.95
hsa-miR-642 C6orf192 Chromosome 6 open reading frame 192 (C6orf192), mRNA. 3.79 -2.87
  SLC44A2 Solute carrier family 44, member 2 (SLC44A2), mRNA.   -2.63
  CDH23 Cadherin-like 23 (CDH23), transcript variant 1, mRNA.   -2.13
  PISD Phosphatidylserine decarboxylase (PISD), mRNA.   -2.06
hsa-miR-92b CIDEB Cell death-inducing DFFA-like effector b (CIDEB), mRNA. 2.03 -3.20
  YPEL3 Yippee-like 3 (Drosophila) (YPEL3), mRNA.   -2.52
  PISD Phosphatidylserine decarboxylase (PISD), mRNA.   -2.06
  GSTM2 Glutathione S-transferase M2 (muscle) (GSTM2), mRNA.   -6.95
  CD79B CD79b molecule, immunoglobulin-associated beta (CD79B), transcript variant 3, mRNA.   -2.21
  GSTM1 Glutathione S-transferase M1 (GSTM1), transcript variant 1, mRNA.   -5.13
hsa-miR-99b CFP Complement factor properdin (CFP), mRNA. 6.53 -3.59
  ATG16L2 ATG16 autophagy related 16-like 2 (S. cerevisiae) (ATG16L2), mRNA.   -3.33
  IL11RA Interleukin 11 receptor, alpha (IL11RA), transcript variant 1, mRNA.   -2.21
  MLKL Mixed lineage kinase domain-like (MLKL), mRNA.   -2.10
Table 3.
Inverse relationship between microRNA and the target mRNA expression identified in RA synovial monocytes (downregulated microRNAs)
MicroRNA Gene symbol Gene name MicroRNA fold change mRNA fold change
hsa-miR-487b ADFP Adipose differentiation-related protein (ADFP), mRNA. -4.71 2.47
  ANKRD9 Ankyrin repeat domain 9 (ANKRD9), mRNA.   3.49
  COLEC12 Collectin sub-family member 12 (COLEC12), mRNA.   7.65
  IDS Iduronate 2-sulfatase (Hunter syndrome) (IDS), transcript variant 1, mRNA.   2.37
  IL21R Interleukin 21 receptor (IL21R), transcript variant 2, mRNA.    
  MGAT4A Mannosyl (alpha-1,3-)-glycoprotein beta-1,4-N-acetylglucosaminyltransf-erase, isozyme A (MGAT4A), mRNA.   2.62
        3.68
  NEK6 NIMA (never in mitosis gene a)-related kinase 6 (NEK6), mRNA.    
  PRDX1 Peroxiredoxin 1 (PRDX1), transcript variant 2, mRNA.   2.77
  SMAD6 SMAD family member 6 (SMAD6), mRNA.   2.22
hsa-miR-335 ANKRD37 Ankyrin repeat domain 37 (ANKRD37), mRNA.   2.62
  ANTXR1 Anthrax toxin receptor 1 (ANTXR1), transcript variant 3, mRNA. -3.22 2.39
  BCAR3 Breast cancer anti-estrogen resistance 3 (BCAR3), mRNA.   2.38
  CCL5 Chemokine (C-C motif) ligand 5 (CCL5), mRNA.   2.85
  DHRS3 Dehydrogenase/reductase (SDR family) member 3 (DHRS3), mRNA.   6.95
  GPRIN3 GPRIN family member 3 (GPRIN3), mRNA.   8.43
  IL7R Interleukin 7 receptor (IL7R), mRNA.   2.51
  OLFML2B Olfactomedin-like 2B (OLFML2B), mRNA.   6.78
  STAT4 Signal transducer and activator of transcription 4 (STAT4), mRNA.   5.26
  ZMYND15 Zinc finger, MYND-type containing 15 (ZMYND15), mRNA.   2.98
hsa-miR-584 ADAMDEC1 1 ADAM-like, decysin 1 (ADAMDEC1), mRNA.   2.41
  AVPI1 Arginine vasopressin-induced 1 (AVPI1), mRNA. -3.07 2.85
  BAG3 BCL2-associated athanogene 3 (BAG3), mRNA.   7.52
  MRAS Muscle RAS oncogene homolog (MRAS), transcript variant 1, mRNA.   2.84
  P4HA2 Procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha polypeptide II (P4HA2), transcript variant 3, mRNA.   2.12
        2.29
  PHACTR1 Phosphatase and actin regulator 1 (PHACTR1), mRNA.    
  PRDX1 Peroxiredoxin 1 (PRDX1), transcript variant 2, mRNA.   2.21
  YWHAH Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, eta polypeptide (YWHAH), mRNA.   2.22
        3.8
hsa-miR-495 BCAT1 Branched chain aminotransferase 1, cytosolic (BCAT1), mRNA.    
  C17orf58 Chromosome 17 open reading frame 58 (C17orf58), transcript variant 2, mRNA. -2.34 4.21
  FASN Fatty acid synthase (FASN), mRNA.   2.01
  HTRA1 HtrA serine peptidase 1 (HTRA1), mRNA.   2.06
  IL18BP Interleukin 18 binding protein (IL18BP), transcript variant A, mRNA.   2.41
  P4HA2 Procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha polypeptide II (P4HA2), transcript variant 3, mRNA.   3.77
        2.29
  PEA15 Phosphoprotein enriched in astrocytes 15 (PEA15), mRNA.   2.6
  TMEM51 Transmembrane protein 51 (TMEM51), mRNA.   11.42
  TUBA1C Tubulin, alpha 1c (TUBA1C), mRNA.   3.1
Table 4.
Roles of the differentially expressed mRNAs in the RA synovial monocytes
Gene symbol MicroRNA Roles in rheumatoid arthritis Refrences
Decreased      
 GSTM1 hsa-miR-125a-3p, hsa-miR-92b The presence of a functional allele for GSTM1 associated with a reduced risk of RA 14,15
 VIPR1 hsa-miR-125a-3p Deficient expression in RA patients associated with the predominant proinflammatory Th1 milieu 16,17
 PADI4 hsa-miR-34a Citrullination of selected substrates may end up in dampening of inflammation at the sites of PAD activity 19
    PAD4 contributes to the generation of ACPA specific substrates and is itself a target of autoantibodies in RA. 18
 CDA hsa-miR-34a Cytidine deaminase levels are raised in serum and synovial fluid in rheumatoid arthritis (RA) 20
Increased      
 IL21R hsa-miR-487b IL-21R is expressed in RA synovium by RASFs and synovial macrophages 21,22
 CCL5 hsa-miR-335 RANTES is overexpressed in RA SF 23
 IL7R hsa-miR-335 Enhanced expression of IL-7Ralpha in RA patients contributes significantly to the joint inflammation 24
 STAT4 hsa-miR-335 STAT4, and Jak3 protein expression was generally increased in inflammatory arthritis 25
    A haplotype of STAT4 is associated with increased risk for both rheumatoid arthritis 26,29
 HTRA1 hsa-miR-495 HtrA1 contributes to the destruction of extracellular matrix through both direct and indirect mechanisms 27
 IL18BP hsa-miR-495 IL18BP levels were raised in RA 28
TOOLS
Similar articles