Abstract
Purpose
To compare surgically induced astigmatism and influences on the corneal endothelium in phacoemulsification by Ozil® and Hyperpulse mode of Infiniti® using 2 different corneal incision lengths of 2.2 mm and 2.8 mm.
Methods
The patients were grouped by the mode of phacoemulsification and incision size as follows: Ozil® mode with 2.2 mm incision group (n = 29), and 2.8 mm incision group (n = 30); Hyperpulse mode with 2.2 mm incision group (n = 29), and 2.8 mm incision group (n = 30). The surgically induced astigmatism, central corneal thickness and endothelial cell density were measured up to 2 months after surgery and the efficiency of 2 modes compared by measuring average phacoemulsification times.
Results
There was no significant difference in the surgically induced astigmatism, central corneal thickness, endothelial cell density, best corrected visual acuity and average phaco power among 4 groups. The cumulated dissipated energy (CDE) using Ozil® mode was lower than Hyperpulse mode in the group of nuclear sclerosis grade 1 and 2.
Conclusions
Two different modes of phacoemulsification using Ozil® and Hyperpulse mode, and different incision sizes of 2.2 mm and 2.8 mm in Infiniti® showed no significant difference in the endothelial cell density or the surgically induced astigmatism up to 2 months after surgery. Phacoemulsification using Ozil® mode is considered more efficient in low grade nuclear sclerosis cataract.
References
1. Kelman CD. Phaco-emulsification and aspiration. A new technique of cataract removal. A preliminary report. Am J Ophthalmol. 1967; 64:23–35.
2. Colleaux KM, Hamilton WK. Effect of prophylactic antibiotics and incision type on the incidence of endophthalmitis after cataract surgery. Can J Ophthalmol. 2000; 35:373–8.
3. Taban M, Sarayba MA, Ignacio TS, et al. Ingress of India ink into the anterior chamber through sutureless clear corneal cataract wounds. Arch Ophthalmol. 2005; 123:643–8.
4. Kershner RM. Clear corneal cataract surgery and the correction of -myopia, hyperopia, and astigmatism. Ophthalmology. 1997; 104:381–9.
5. Cravy TV. Calculation of the change in corneal astigmatism following cataract extraction. Ophthalmic Surg. 1979; 10:38–49.
6. Simşek S, Yaşar T, Demirok A, et al. Effect of superior and temporal clear corneal incisions on astigmatism after sutureless phacoemulsification. J Cataract Refract Surg. 1998; 24:515–8.
7. Crema AS, Walsh A, Yamane Y, Nosé W. Comparative study of coaxial phacoemulsification and microincision cataract surgery. One-year follow-up. J Cataract Refract Surg. 2007; 33:1014–8.
8. Ku CH, Kim HJ, Joo CK. The comparison of astigmatism according to the incision size in small incision cataract surgery. J Korean Ophthalmol Soc. 2005; 46:416–21.
9. Vargas LG, Holzer MP, Solomon KD, et al. Endothelial cell integrity after phacoemulsification with 2 different handpieces. J Cataract Refract Surg. 2004; 30:478–82.
10. O'Brien PD, Fitzpatrick P, Kilmartin DJ, Beatty S. Risk factors for endothelial cell loss after phacoemulsification surgery by a junior resident. J Cataract Refract Surg. 2004; 30:839–43.
11. Rho CR, Kim SY, Joo CK. Clinical result of cataract operation using custom control software. J Korean Ophthalmol Soc. 2006; 47:735–9.
12. Vasavada V, Vasavada V, Raj SM, Vasavada AR. Intraoperative performance and postoperative outcomes of microcoaxial phacoemulsification. Observational study. J Cataract Refract Surg. 2007; 33:1019–24.
13. Liu Y, Zeng M, Liu X, et al. Torsional mode versus conventional ultrasound mode phacoemulsification: randomized comparative clinical study. J Cataract Refract Surg. 2007; 33:287–92.
14. Jun B, Berdahl JP, Kuo AN, et al. Corneal wound architecture and integrity after torsional and mixed phacoemulsification: evaluation of standard and microincisional coaxial techniques. Ophthalmic Surg Lasers Imaging. 2010; 41:128–34.
15. Holladay JT, Cravy TV, Koch DD. Calculating the surgically induced refractive change following ocular surgery. J Cataract Refract Surg. 1992; 18:429–43.
16. Jee DH, Lee PY, Joo CK. The comparison of astigmatism according to the incision size in cataract operation. J Korean Ophthalmol Soc. 2003; 44:594–8.
17. Long DA, Monica ML. A prospective evaluation of corneal curvature changes with 3.0- to 3.5-mm corneal tunnel phacoemulsification. Ophthalmology. 1996; 103:226–32.
18. Alió J, Rodríguez-Prats JL, Galal A, Ramzy M. Outcomes of microincision cataract surgery versus coaxial phacoemulsification. Ophthalmology. 2005; 112:1997–2003.
19. Yao K, Tang X, Ye P. Corneal astigmatism, high order aberrations, and optical quality after cataract surgery: microincision versus small incision. J Refract Surg. 2006; 22:S1079–82.
20. Choi JA, Chung SK, Kim HS. Comparative study of microcoaxial cataract surgery and conventional cataract surgery. J Korean Ophthalmol Soc. 2008; 49:904–10.
21. Kurz S, Krummenauer F, Gabriel P, et al. Biaxial microincision versus coaxial small-incision clear cornea cataract surgery. Ophthalmology. 2006; 113:1818–26.
22. Hwang SJ, Choi SK, Oh SH, et al. Surgically induced astigmatism and corneal higher order aberrations in microcoaxial and conventional cataract surgery. J Korean Ophthalmol Soc. 2008; 49:1597–602.
23. Masket S, Wang L, Belani S. Induced astigmatism with 2.2-and 3.0-mm coaxial phacoemulsification incisions. J Refract Surg. 2009; 25:21–4.
24. Beesley RD, Olson RJ, Brady SE. The effects of prolonged phacoemulsification time on the corneal endothelium. Ann Ophthalmol. 1986; 18:216–9, 222.
25. Jacobs PM, Cheng H, Price NC, et al. Endothelial cell loss after cataract surgery–the problem of interpretation. Trans Ophthalmol Soc U K. 1982; 102(pt 2):291–3.
26. Oki K. Measuring rectilinear flow within the anterior chamber in phacoemulsification procedures. J Cataract Refract Surg. 2004; 30:1759–67.
27. Davison JA. Comparison of ultrasonic energy expenditures and corneal endothelial cell density reductions during modulated and non-modulated phacoemulsification. Ophthalmic Surg Lasers Imaging. 2007; 38:209–18.
28. Lee KI, Kim MS. The evaluation of the endothelial cells after cataract extraction and IOL insertion in patients with corneal guttata. J Korean Ophthalmol Soc. 1998; 39:2272–9.
29. Joussen AM, Barth U, Cubuk H, Koch H. Effect of irrigating solution and irrigation temperature on the cornea and pupil during phacoemulsification. J Cataract Refract Surg. 2000; 26:392–7.
30. Bourne RR, Minassian DC, Dart JK, et al. Effect of cataract surgery on the corneal endothelium: modern phacoemulsification compared with extracapsular cataract surgery. Ophthalmology. 2004; 111:679–85.
31. Suzuki H, Takahashi H, Hori J, et al. Phacoemulsification associated corneal damage evaluated by corneal volume. Am J Ophthalmol. 2006; 142:525–8.
32. Chung HJ, Kim HS. Comparison of clinical results between Ozil(R) mode and hyperpulse mode in phacoemulsification. J Korean Ophthalmol Soc. 2009; 50:347–52.
Table 1.
Ozil® mode | Hyperpulse mode | p-value∗ | |||
---|---|---|---|---|---|
2.2 mm | 2.8 mm | 2.2 mm | 2.8 mm | ||
Number of eyes | 29 | 30 | 29 | 30 | |
Average patient age (years) | 65.2 ± 9.7 | 67.9 ± 11.0 | 67.8 ± 9.5 | 66.7 ± 11.4 | 0.527 |
Male/Female | 14/15 | 14/16 | 14/15 | 14/16 | |
Mean nucleus density | 2.07 ± 0.92 | 2.03 ± 0.89 | 2.07 ± 0.88 | 2.07 ± 0.83 | 0.890 |
Table 2.
Ozil® mode | Hyperpulse mode | p-value∗ | |||
---|---|---|---|---|---|
2.2 mm | 2.8 mm | 2.2 mm | 2.8 mm | ||
BCVA | 0.48 ± 0.26 | 0.45 ± 0.34 | 0.40 ± 0.28 | 0.44 ± 0.30 | 0.268 |
Corneal curvature (D) | 43.5 ± 1.2 | 43.5 ± 1.3 | 43.7 ± 1.3 | 43.3 ± 1.2 | 0.844 |
Corneal thickness (μm) | 538.6 ± 30.0 | 533.7 ± 33.3 | 540.7 ± 35.1 | 545.0 ± 30.7 | 0.587 |
Endothelial cell count (cells/mm2) | 2544.6 ± 306.4 | 2505.1 ± 275.8 | 2470.3 ± 330.6 | 2541.0 ± 384.6 | 0.504 |
Hexagonality (%) | 62.0 ± 9.2 | 57.2 ± 10.4 | 61.5 ± 10.6 | 59.5 ± 13.7 | 0.866 |
Coefficient of variation | 0.30 ± 0.06 | 0.35 ± 0.07 | 0.32 ± 0.08 | 0.33 ± 0.09 | 0.531 |
Table 3.
Ozil® mode | Hyperpulse mode | p-value∗ | p-value† | |||
---|---|---|---|---|---|---|
2.2 mm | 2.8 mm | 2.2 mm | 2.8 mm | |||
POD 1 day | 1.2 ± 0.5 | 1.5 ± 0.5 | 1.4 ± 0.6 | 1.3 ± 0.7 | 0.219 | 0.135/0.845 |
POD 1 week | 1.2 ± 0.5 | 1.4 ± 0.3 | 1.4 ± 0.5 | 1.0 ± 0.5 | 0.985 | 0.552/0.888 |
POD 2 weeks | 0.2 ± 0.4 | 0.3 ± 0.3 | 0.1 ± 0.4 | 0.1 ± 0.3 | 0.738 | 0.399/0.536 |
POD 1 month | 0.2 ± 0.2 | 0.2 ± 0.3 | 0.2 ± 0.3 | 0.1 ± 0.2 | 0.645 | 0.602/0.373 |
POD 2 months | 0.2 ± 0.2 | 0.1 ± 0.2 | 0.2 ± 0.3 | 0.2 ± 0.2 | 0.791 | 0.290/0.849 |
Table 4.
Ozil® mode | Hyperpulse mode | p-value∗ | p-value† | |||
---|---|---|---|---|---|---|
2.2 mm | 2.8 mm | 2.2 mm | 2.8 mm | |||
POD 1 day | 30.9 ± 17.7 | 31.9 ± 26.0 | 34.3 ± 29.5 | 46.1 ± 21.2 | 0.074 | 0.399/0.893 |
POD 1 week | 36.7 ± 21.4 | 29.9 ± 23.6 | 33.4 ± 34.3 | 27.8 ± 26.1 | 0.162 | 0.275/0.190 |
POD 2 weeks | 29.3 ± 25.3 | 34.4 ± 32.2 | 27.7 ± 28.6 | 20.8 ± 26.4 | 0.709 | 0.522/0.061 |
POD 1 month | 16.2 ± 19.3 | 17.0 ± 29.0 | 13.8 ± 23.3 | 14.1 ± 17.6 | 0.760 | 0.870/0.373 |
POD 2 months | 6.4 ± 50.3 | 5.1 ± 43.8 | 8.0 ± 25.0 | 6.8 ± 23.3 | 0.389 | 0.135/0.592 |
Table 5.
Ozil® mode | Hyperpulse mode | p-value∗ | p-value† | |||
---|---|---|---|---|---|---|
2.2 mm | 2.8 mm | 2.2 mm | 2.8 mm | |||
POD 1 day | 126.5 ± 228.4 | 182.0 ± 282.0 | 130.1 ± 305.5 | 175.0 ± 207.4 | 0.922 | 0.511/0.767 |
POD 1 week | 143.9 ± 275.6 | 149.8 ± 287.1 | 119.5 ± 243.4 | 198.5 ± 216.1 | 0.325 | 0.473/0.154 |
POD 2 weeks | 161.1 ± 265.1 | 199.3 ± 279.3 | 120.7 ± 219.7 | 160.0 ± 218.8 | 0.906 | 0.145/0.071 |
POD 1 month | 129.6 ± 215.4 | 155.5 ± 241.7 | 207.5 ± 211.6 | 155.0 ± 223.6 | 0.587 | 0.297/0.052 |
POD 2 months | 125.3 ± 223.2 | 132.7 ± 327.4 | 145.2 ± 292.6 | 155.0 ± 123.6 | 0.710 | 0.722/0.063 |
Table 6.
Ozil® mode | Hyperpulse mode | p-value∗ | |||
---|---|---|---|---|---|
2.2 mm | 2.8 mm | 2.2 mm | 2.8 mm | ||
POD 1 day | 0.5 ± 0.5 | 0.4 ± 0.3 | 0.4 ± 0.2 | 0.4 ± 0.4 | 0.352 |
POD 1 week | 0.4 ± 0.3 | 0.4 ± 0.3 | 0.4 ± 0.2 | 0.3 ± 0.3 | 0.383 |
POD 2 weeks | 0.5 ± 0.3 | 0.3 ± 0.4 | 0.4 ± 0.3 | 0.4 ± 0.3 | 0.530 |
POD 1 month | 0.4 ± 0.2 | 0.4 ± 0.3 | 0.3 ± 0.3 | 0.3 ± 0.3 | 0.366 |
POD 2 months | 0.5 ± 0.3 | 0.4 ± 0.4 | 0.3 ± 0.3 | 0.4 ± 0.3 | 0.291 |
Table 7.
Ozil® mode | Hyperpulse mode | p-value∗ | ||||
---|---|---|---|---|---|---|
2.2 mm | 2.8 mm | 2.2 mm | 2.8 mm | |||
CDE (sec) | NSG 1 | 6.5 ± 1.9 | 8.1 ± 4.1 | 14.2 ± 6.5 | 16.7 ± 6.6 | 0.008∗ |
NSG 2 | 11.5 ± 3.6 | 12.3 ± 5.7 | 23.3 ± 5.5 | 21.3 ± 4.9 | 0.003 | |
NSG 3 | 31.6 ± 2.5 | 30.5 ± 10.8 | 37.2 ± 17.2 | 35.0 ± 6.8 | 0.209 | |
NSG 4 | 33.8 ± 4.2 | 38.1 ± 3.4 | 39.8 ± 3.7 | 42.9 ± 5.4 | 0.232 | |
Average phaco power (%) | NSG 1 | 26.5 ± 8.1 | 30.9 ± 9.2 | 32.7 ± 6.5 | 31.4 ± 8.6 | 0.385 |
NSG 2 | 40.6 ± 8.1 | 37.6 ± 9.2 | 37.5 ± 3.3 | 36.9 ± 4.7 | 0.506 | |
NSG 3 | 40.7 ± 7.5 | 44.0 ± 10.5 | 45.2 ± 4.2 | 39.1 ± 9.2 | 0.771 | |
NSG 4 | 39.8 ± 4.1 | 41.3 ± 7.2 | 44.4 ± 5.0 | 38.3 ± 6.3 | 0.340 |
Table 8.
Phacoemulsification mode and incision size | p-value∗ | |
---|---|---|
NSG1 | NSG2 | |
2.2 mm Ozil – 2.8 mm Ozil | 0.858 | 0.919 |
2.2 mm Ozil – 2.2 mm Hyperpulse | 0.008∗ | 0.000∗ |
2.2 mm Ozil – 2.8 mm Hyperpulse | 0.001∗ | 0.001∗ |
2.8 mm Ozil – 2.2 mm Hyperpulse | 0.043∗ | 0.000∗ |
2.8 mm Ozil – 2.8 mm Hyperpulse | 0.005∗ | 0.000∗ |
2.2 mm Hyperpulse – 2.8 mm Hyperpulse | 0.823 | 0.585 |