Journal List > J Korean Med Assoc > v.52(2) > 1042124

Kim and Lee: Current Status and Future of Artificial Blood – Focusing on Red Blood Cell Substitutes

Abstract

Blood substitutes, especially red blood cell (RBC) substitutes, have been developed for the past five decades and have several advantages over allogenic packed RBCs, including a prolonged half-life, lack of a cross-matching requirement, and minimal infection risk or concerns about immunologic reactions. There are two main groups in RBC substitutes: perfluorochemicals and hemoglobin-based oxygen carriers (HBOCs). HBOCs are made of hemoglobins from: human, bovine or recombinant and undergo three modification types: chemical (intramolecular cross-linking, polymerization, conjugation to macromolecules and combination of several chemical modifications), genetic, or technological (microencapsulation). The types, side effects, current status of clinical trials, and the future of HBOCs are described in details.

References

1. Mollison PL, Engelfriet P. Blood Transfusion. Semin Hematol. 1999; 36:48–58.
2. Landsteiner, Karl Landsteiner. Biography. Nobel Lectures-Physiology or Medicine 1922–1941. Amsterdam: Elsevier Publishing Company;1965.
3. Spiess BD. Choose one: Damned if you do/damned if you don t! Crit Care Med. 2005; 33:1871–1874.
4. Alter HJ, Klein HG. The hazards of blood transfusion in historical perspective blood. 2008; 112:2617–2626.
5. Smani Y, Labrude P, Vigneron C, Faivre B. Hemoglobin-based oxygen carriers and trials to substitute red blood cells. Transfus Clin Biol. 2007; 14:464–473.
6. Kocian R, Spahn DR. Haemoglobin, oxygen carriers and perioperative organ perfusion. Best Pract Res Clin Anaesthesiol. 2008; 22:63–80.
crossref
7. Winslow RM. Current status of oxygen carriers (blood substitutes). Vox Sanguinis. 2006; 91:102–110.
8. Arifin DR, Palmer AF. Polymersome encapsulated hemoglobin: a novel type oxygen carrier. Biomacromolecules. 2005; 6:2172–2181.
9. Spahn DR, Kocian R. Artificial O2 carriers: status in 2005. Curr Pharm Des. 2005; 11:4099–4114.
crossref
10. Spahn DR, Pasch D. Physiological properties of blood substitutes. News Physiol Sci. 2001; 16:38–41.
crossref
11. Riess JG. Perfluorocarbon-based oxygen delivery. Art Cells Blood Subs Immob Biotech. 2006; 34:567–580.
crossref
12. Riess JG. Understanding the fundamentals of perfluorocar-bons and perfluorocarbon emulsions relevant to in vivo oxygen delivery. Art Cells Blood Subs Immob Biotech. 2005; 33:47–63.
13. Habler O, Pape A, Meier J, Zwissler B. Artificial oxygen carriers as an alternative to red blood cell transfusion. Anaes-thesist. 2005; 54:741–754.
14. Stollings JL, Oyen LJ. Oxygen therapeutics: oxygen delivery without blood. Pharmacotherapy. 2006; 26:1453–1464.
crossref
15. Standl T. Autologous transfusion-from euphoria to reason: clinical practice based on scientific knowledge. (Part IV). Artificial oxygen carriers: cell-free hemoglobin solutions-current status 2004. Anasthesiol Intensivmed Notfallmed Schmerzther. 2005; 40:38–45.
16. Jahr JS, Walker V, Manoochehri K. Blood substitutes as pharmacotherapies in clinical practice. Curr Opin Anaesthesiol. 2007; 20:325–330.
crossref
17. Gould SA, Moore EE, Hoyt DB, Ness PM, Norris EJ, Carson JL, Hides GA, Freeman IH, DeWoskin R, Moss GS. The life-sustaining capacity of human polymerized hemoglobin when red cells might be unavailable. J Am Coll Surg. 2002; 195:445–452. discussion 452–455.
crossref
18. Olofsson C, Ahl T, Johansson T, Larsson S, Nellgård P, Ponzer S, Fagrell B, Przybelski R, Keipert P, Winslow N, Winslow RM. A multicenter clinical study of the safety and activity of maleimide-polyethylene glycol-modified Hemoglobin (Hemospan) in patients undergoing major orthopedic surgery. Anesthesiology. 2006; 105:1153–1163.
crossref
19. Moore EE, Cheng AM, Moore HB, Masuno T, Johnson JL. Hemoglobin-based oxygen carriers in trauma care: scientific rationale for the US multicenter prehosptial trial. World J Surg. 2006; 30:1247–1257.
crossref
20. Standl T. A new oxygen transport agent. Haematologica. 2005; 90:437–438.
21. Winslow RM. Red cell substitutes. Semin Hematol. 2007; 44:51–59.
crossref
22. Doherty DH, Doyle MP, Curry SR, Vali RJ, Fattor TJ, Olson JS, Lemon DD. Rate of reaction with nitric oxide determines the hypertensive effect of cell-free hemoglobin. Nat Biotechnol. 1998; 16:672–676.
crossref
23. Stollings JL, Oyen LJ. Oxygen therapeutics: oxygen delivery without blood. Pharmacotherapy. 2006; 26:1453–1464.
crossref
24. Schubert A, Przybelski RJ, Eidt JF, Lasky LC, Marks KE, Karafa M, Novick AC, O Hara JF Jr, Saunders ME, Blue JW, Tetzlaff JE, Mascha E. Perioperative Avoidance or Reduction of Transfusion Trial (PARTT) Study Group. Diaspirincrosslinked hemoglobin reduces blood transfusion in noncardiac surgery: a multicenter, randomized, controlled, double-blinded trial. Anesth Analg. 2003; 97:323–332.
crossref
25. Yu B, Liu Z, Chang TMS. Polyhemoglobin with different percentage of tetrameric hemoglobin and effects on vasoactivity and electrocardiogram. Art Cells Blood Subs Immob Biotech. 2006; 34:159–173.
crossref
26. Kim HW, Greenburg AG. Artificial oxygen carriers as red blood cell substitutes: a selected review and current status. Art Organs. 2004; 28:813–828.
crossref
27. Chang TMS. Blood substitutes: principles, methods, products and clinical trials. 1st ed.Basel: Karger Landes Systems;1997.
28. Chang TMS. Blood substitutes based on nanobiotechnology. Trends Biotechnol. 2006; 24:372–377.
crossref
29. Gould SA, Moore EE, Hoyt DB, Burch JM, Haenel JB, Garcia J, DeWoskin R, Moss GS. The first randomized trial of human polymerized hemoglobin as a blood substitute in acute trauma and emergent surgery. J Am Coll Surg. 1998; 187:113–120. discussion 120–122.
crossref
30. Chatterjee R, Welty EV, Walder RY, Pruitt SL, Rogers PH, Arnone A, Walder JA. Isolation and characterization of a new hemoglobin derivative crosslinked between the alpha chains (lysine 99 alpha 1-lysine 99 alpha 2). J Biol Chem. 1986; 261:9929–9937.
crossref
31. Vandegriff KD, Medina F, Marini MA, Winslow RM. Equilibrium oxygen binding to human hemoglobin crosslinked between the alpha chains by bis (3,5-dibromosalicyl) fumarate. J Biol Chem. 1989; 264:17824–17833.
32. Lamy ML, Daily EK, Brichant JF, Larbuisson RP, Demeyere RH, Vandermeersch EA, Lehot JJ, Parsloe MR, Berridge JC, Sinclair CJ, Baron JF, Przybelski RJ. Randomized trial of diaspirin crosslinked hemoglobin solution as an alternative to blood transfusion after cardiac surgery. The DCLHb Cardiac Surgery Trial Collaborative Group. Anesthesiology. 2000; 92:646–656.
33. Sloan EP, Koenigsberg M, Gens D, Cipolle M, Runge J, Mallory MN, Rodman G Jr. Diaspirin crosslinked hemoglobin (DCLHb) in the treatment of severe traumatic hemorrhagic shock: a randomized controlled efficacy trial. JAMA. 1999; 282:1857–1864.
34. Kerner T, Ahlers O, Veit S, Riou B, Saunders M, Pison U. European DCLHb Trauma Study Group. DCL-Hb for trauma patients with severe hemorrhagic shock: the European OnScene multicenter study. Intensive Care Med. 2003; 29:378–385.
crossref
35. Schubert A, O Hara JF Jr, Przybelski RJ, Tetzlaff JE, Marks KE, Mascha E, Novick AC. Effect of diaspirin crosslinked hemoglobin (DCLHb HemAssist) during high blood loss surgery on selected indices of organ function. Artif Cells Blood Substit Immobil Biotechnol. 2002; 30:259–283.
crossref
36. Cheng DC, Mazer CD, Martineau R, Ralph-Edwards A, Karski J, Robblee J, Finegan B, Hall RI, Latimer R, Vuylsteke A. A phase II doseresponse study of hemoglobin raffimer (Hemolink) in elective coronary artery bypass surgery. J Thorac Cardiovasc Surg. 2004; 127:79–86.
crossref
37. Hill SE, Gottschalk LI, Grichnik K. Safety and preliminary efficacy of hemoglobin raffimer for patients undergoing coronary artery bypass surgery. J Cardiothorac Vasc Anesth. 2002; 16:695–702.
crossref
38. Greenburg AG, Kim HW. Hemolink Study Group. Use of an oxygen therapeutic as an adjunct to intraoperative autologous donation to reduce transfusion requirements in patients undergoing coronary artery bypass graft surgery. J Am Coll Surg. 2004; 198:373–383. discussion 384–385.
39. Intaglietta M, Johnson PC, Winslow RM. Microvascular and tissue oxygen distribution. Cardiovasc Res. 1996; 32:632–643.
crossref
40. Winslow RM, Vandegriff K, Wettstein R. Autoregulation and vasoconstriction: foundation for a new generation of blood substitutes. Blood. 2002; 100:210.
41. McCarthy MR, Vandegriff KD, Winslow RM. The role of facilitated diffusion in oxygen transport by cell-free hemoglobins: implications for the design of hemoglobin-based oxygen carriers. Biophys Chem. 2001; 92:103–117.
crossref
42. Vandegriff KD, Malavalli A, Wooldridge J, Lohman J, Winslow RM. MP4, a new nonvasoactive PEG-Hb conjugate. Transfusion. 2003; 43:509–516.
crossref
43. Sakai H, Hara H, Yuasa M, Tsai AG, Takeoka S, Tsuchida E, Intaglietta M. Molecular dimensions of Hb-based O2 carriers determine constriction of resistance arteries and hypertension. Am J Physiol Heart Circ Physiol. 2000; 279:H908–915.
crossref
44. Tsai AG, Cabrales P, Manjula BN, Acharya SA, Winslow RM, Intaglietta M. Dissociation of local nitric oxide concentration and vasoconstriction in the presence of cell-free hemoglobin oxygen carriers. Blood. 2006; 108:3603–3610.
crossref
45. Björkholm M, Fagrell B, Przybelski R, Winslow N, Young M, Winslow RM. A phase I single blind clinical trial of a new oxygen transport agent (MP4), human hemoglobin modified with maleimide-activated polyethylene glycol. Haematologica. 2005; 90:505–515.
46. Olofsson C, Ahl T, Johansson T, Larsson S, Nellgård P, Ponzer S, Fagrell B, Przybelski R, Keipert P, Winslow N, Winslow RM. A multicenter clinical study of the safety and activity of maleimide-polyethylene glycol-modified Hemoglobin (Hemospan) in patients undergoing major orthopedic surgery. Anesthesiology. 2006; 105:1153–1163.
crossref
47. Smani Y. Hemospan: a hemoglobin-based oxygen carrier for potential use as a blood substitute and for the potential treatment of critical limb ischemia. Curr Opin Investig Drugs. 2008; 9:1009–1019.
48. Stowell CP, Levin J, Spiess BD, Winslow RM. Progress in the development of RBC substitutes. Transfusion. 2001; 41:287–299.
crossref
49. Jahr JS, Mackenzie C, Pearce LB, Pitman A, Greenburg AG. HBOC-201 as an alternative to blood transfusion: efficacy and safety evaluation in a multicenter phase III trial in elective orthopedic surgery. J Trauma. 2008; 64:1484–1497.
crossref
50. LaMuraglia GM, O Hara PJ, Baker WH, Naslund TC, Norris EJ, Li J, Vandermeersch E. The reduction of the allogenic transfusion requirement in aortic surgery with a hemoglobin-based solution. J Vasc Surg. 2000; 31:299–308.
crossref
51. Kasper SM, Grüne F, Walter M, Amr N, Erasmi H, Buzello W. The effects of increased doses of bovine hemoglobin on hemodynamics and oxygen transport in patients undergoing preoperative hemodilution for elective abdominal aortic surgery. Anesth Analg. 1998; 87:284–291.
crossref
52. Levy JH, Goodnough LT, Greilich PE, Parr GV, Stewart RW, Gratz I, Wahr J, Williams J, Comunale ME, Doblar D, Silvay G, Cohen M, Jahr JS, Vlahakes GJ. Polymerized bovine hemoglobin solution as a replacement for allogeneic red blood cell transfusion after cardiac surgery: results of a randomized, double-blind trial. J Thorac Cardiovasc Surg. 2002; 124:35–42.
crossref
53. Sprung J, Kindscher JD, Wahr JA, Levy JH, Monk TG, Moritz MW, O Hara PJ. The use of bovine hemoglobin glutamer-250 (Hemopure) in surgical patients: results of a multicenter, randomized, single-blinded trial. Anesth Analg. 2002; 94:799–808.
crossref
54. Sprung J, Popp H, O Hara P, Woletz J. The successful use of hemoglobin-based oxygen carrier as a primary blood substitute during abdominal aneurysm repair with large blood loss. Anesth Analg. 2001; 92:1413–1415.
crossref
55. Jahr JS, Moallempour M, Lim JC. HBOC-201, hemoglobin glutamer-250 (bovine), Hemopure (Biopure Corporation). Expert Opin Biol Ther. 2008; 8:1425–1433.
56. Henkel-Honke T, Oleck M. Artificial oxygen carriers: a current review. AANA J. 2007; 75:205–211.
57. Rosen AL, Gould SA, Sehgal LR, Sehgal HL, Levine HD, DeWoskin RD, Moss GS. Effect of hemoglobin solution on compensation to anemia in the erythrocyte-free primate. J Appl Physiol. 1990; 68:938–943.
crossref
58. Jahr JS, Varma N. PolyHeme. Northfield Laboratories. IDrugs. 2004; 7:478–482.
59. Gould SA, Moore EE, Moore FA, Haenel JB, Burch JM, Sehgal H, Sehgal L, DeWoskin R, Moss GS. Clinical utility of human polymerized hemoglobin as a blood substitute after acute trauma and urgent surgery. J Trauma. 1997; 43:325–331. discussion 331–332.
crossref
60. Sameer S. Apte. Blood substitutes-the polyheme trials. Mcgill J Med. 2008; 11:59–65.
61. Hoffman SJ, Looker DL, Roehrich JM, Cozart PE, Durfee SL, Tedesco JL, Stetler GL. Expression of fully functional tetrameric human hemoglobin in Escherichia coli. Proc Natl Acad Sci USA. 1990; 87:8521–8525.
crossref
62. Looker D, Abbott-Brown D, Cozart P, Durfee S, Hoffman S, Mathews AJ, Miller-Roehrich J, Shoemaker S, Trimble S, Fermi G, Komiyama NH, Nagai K, Stetler GL. A human recombinant haemoglobin designed for use as a blood substitute. Nature. 1992; 356:258–260.
crossref
63. Siegel JH, Fabian M, Smith JA, Costantino D. Use of recombinant hemoglobin solution in reversing lethal hemorrhagic hypovolemic oxygen debt shock. J Trauma. 1997; 42:199–212.
crossref
64. Olson JS, Foley EW, Rogge C, Tsai AL, Doyle MP, Lemon DD. No scavenging and the hypertensive effect of hemoglobin-based blood substitutes. Free Radic Biol Med. 2004; 36:685–697.
crossref
65. Loeb AL, McIntosh LJ, Raj NR, Longnecker DE. Resuscitation after hemorrhage using recombinant human hemoglobin (rHb1.1) in rats: effects on nitric oxide and prostanoid systems. Crit Care Med. 1998; 26:1071–1080.
66. Razack S, D Agnillo F, Chang TM. Crosslinked hemoglobin-superoxide dismutase-catalase scavenges free radicals in a rat model of intestinal ischemia-reperfusion injury. Artif Cells Blood Substit Immobil Biotechnol. 1997; 25:181–192.
crossref
67. Powanda DD, Chang TM. Cross-linked polyhemoglobin-superoxide dismutase-catalase supplies oxygen without causing blood-brain barrier disruption or brain edema in a rat model of transient global brain ischemia-reperfusion. Artif Cells Blood Substit Immobil Biotechnol. 2002; 30:23–37.
68. Matheson B, Razynska A, Kwansa H, Bucci E. Appearance of dissociable and crosslinked hemoglobins in the renal hilar lymph. J Lab Clin Med. 2000; 135:459–464.
crossref
69. Sakai H, Hamada K, Takeoka S, Nishide H, Tsuchida E. Physical properties of hemoglobin vesicles as red cell substitutes. Biotechnol Prog. 1996; 12:119–125.
crossref
70. Hopman MT, Dueck C, Monroe M, Philips WT, Skinner JS. Limits to maximal performance in individuals with spinal cord injury. Int J Sports Med. 1998; 19:98–103.
crossref
71. Chang TM. Future generations of red blood cell substitutes. J Intern Med. 2003; 253:527–535.
crossref
72. Spahn DR, Leone BJ, Reves JG, Pasch T. Cardiovascular and coronary physiology of acute isovolemic hemodilution: a review of nonoxygen-carrying and oxygen-carrying solutions. Anesth Analg. 1994; 78:1000–1021.
73. Riess JG. Overview of progress in the fluorocarbon approach to in vivo oxygen delivery. Biomater Artif Cells Immobilization Biotechnol. 1992; 20:183–202.
74. Wahr JA, Trouwborst A, Spence RK, Henny CP, Cernaianu AC, Graziano GP, Tremper KK, Flaim KE, Keipert PE, Faithfull NS, Clymer JJ. A pilot study of the effects of a perflubron emulsion, AF 0104, on mixed venous oxygen tension in anesthetized surgical patients. Anesth Analg. 1996; 82:103–107.
crossref
75. Leese PT, Noveck RJ, Shorr JS, Woods CM, Flaim KE, Keipert PE. Randomized safety studies of intravenous perflubron emulsion. I. Effects on coagulation function in healthy volunteers. Anesth Analg. 2000; 91:804–811.
crossref
76. Habler OP, Kleen MS, Hutter JW, Podtschaske AH, Tiede M, Kemming GI, Welte MV, Corso CO, Batra S, Keipert PE, Faithfull NS, Messmer KF. Effects of hyperoxic ventilation on hemodilution-induced changes in anesthetized dogs. Transfusion. 1998; 38:135–144.
crossref
77. Keipert PE, Faithfull NS, Bradley JD, Hazard DY, Hogan J, Levisetti MS, Peters RM. Oxygen delivery augmentation by low-dose perfluorochemical emulsion during profound normovolemic hemodilution. Adv Exp Med Biol. 1994; 345:197–204.
crossref
78. Holman WL, Spruell RD, Ferguson ER, Clymer JJ, Vicente WV, Murrah CP, Pacifico AD. Tissue oxygenation with graded dissolved oxygen delivery during cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1995; 110:774–785.
crossref
79. Spahn DR, van Brempt R, Theilmeier G, Reibold JP, Welte M, Heinzerling H, Birck KM, Keipert PE, Messmer K, Heinzerling H, Birck KM, Keipert PE, Messmer K. Perflubron emulsion delays blood transfusions in orthopedic surgery. European Perflubron Emulsion Study Group. Anesthesiology. 1999; 91:1195–1208.
80. Noveck RJ, Shannon EJ, Leese PT, Shorr JS, Flaim KE, Keipert PE, Woods CM. Randomized safety studies of intravenous perflubron emulsion. II. Effects on immune function in healthy volunteers. Anesth Analg. 2000; 91:812–822.
crossref
81. Spahn DR, Waschke KF, Standl T, Motsch J, Van Huynegem L, Welte M, Gombotz H, Coriat P, Verkh L, Faithfull S, Keipert P. European Perflubron Emulsion in NonCardiac Surgery Study Group. Use of perflubron emulsion to decrease allogeneic blood transfusion in high-blood-loss non-cardiac surgery: results of a European phase 3 study. Anesthesiology. 2002; 97:1338–1349.
82. Spahn DR, Kocian R. The place of artificial oxygen carriers in reducing allogeneic blood transfusions and augmenting tissue oxygenation. Can J Anaesth. 2003; 50:S41–47.
83. Vigneron C, Smani Y, Faivre B. Blood substitutes: state of the art and technical setbacks and why we are still disappointed. Bull Acad Natl Med. 2007; 191:837–847. discussion 847.
84. Kao LS, Gallus A. Review: Hemoglobin-based blood substitutes increase mortality and myocardial infarction in surgical, trauma, and stroke settings. ACP J Club. 2008; 149:4.
crossref
85. Natanson C, Kern S, Lurie P, Banks SM, Wolfe SM. Cell-free hemoglobin based blood substitutes and risk of myocardial infarction and death: a metaanalysis. JAMA. 2008; 299:2304–2312.
86. Chang TMS. Nanobiotechnological modification of hemoglobin and enzymes from this laboratory. Biochemica et Biophysica Acta: Proteins & Proteomics. 2008; 1784:1435–1440.
crossref

Table 1.
Artificial O2 carriers (9)
Hemoglobin based O2 carriers
• Diaspirin cross-linked hemoglobin (DCLHb, HemAssist®)
• Human recombinant hemoglobin version 1.1 (rHb1.1)
• Human recombinant hemoglobin version 2.0 (rHb2.0)
• Polymerized bovine hemoglobin (HBOC-201, Hemopure®)
• Human polymerized hemoglobin (PolyHeme®)
• Hemoglobin raffimer (Hemolink??)
• Maleimide-activated polyethylene glycol-modified hemoglobin (MP4, Hemospan®)
• Enzyme cross-linked polyhemoglobin
Perfluorocarbon emulsions
 Perflubron emulsion (OxygentTM)
Nano-dimension artificial red blood cells
Allosteric modifier (RSR13)
Table 2.
Physico-chemical characteristics of modified hemoglobin solutions
  Source of Hb Intramolecular modification Intermolecular cross-linking Concentrattion (g/dL) Met.Hb (%) Viscosity (cP) COP (mm Hg) P50 (mm Hg) T1/2 (h) Non polymerized (%) Clinical Develop. Phase
DCLHb ODB diaspirin none 10 < 5.0 1.3 42 32 24 > 99 stopped
rHb1.1 Hum. rec. glycine none 5∼10   1.9 42 33 2 na stopped
rHb2.0 Hum. rec. fusion of α-chains* PEG-based* 10   2.4 68 31   na stopped
HBOC-201 bovine   glutaraldehyde 13? < 5.0 1.3 17 32∼3 8 24 < 5 III finished
PolyHeme® ODB pyridoxal phosphate glutaraldehyde 10 < 8.0     26∼30 0 24 1 III finished
HemolinkTM ODB o-raffinose o-raffinose 10 < 15.0     34 20 30∼40 stopped
MP4 ODB PEG conjugation none 4.2?.2 <0.5 2.5?.0 55?0 10 24 100 II / III

Hb = hemoglobin, Met Hb = methemoglobin, COP = colloid oncotic pressure, P50 = 02 partial pressure associated with a 50% hemoglobin saturation, T1/2 = intravascular half life (maximal values listed), ODB = outdated donor blood, hum. rec.= human recombinant, PEG = polyethylene glycol, na = not applicable,

* no more precise information was available in June 2004 (6, 9, 85)

DCLHb = HemAssist® = diaspirin cross-linked hemoglobin (Baxter Healthcare Corp., Deerfield, IL)

rHb1.1 = human recombinant hemoglobin version 1.1 (Somatogen Inc., Boulder, CO, later Baxter Healthcare Corp.)

rHb2.0 = human recombinant hemoglobin version 2.0 (Baxter Healthcare Corp.)

HBOC-201= Hemopure® = polymerized bovine hemoglobin (Biopure Corp., Cambridge, MA)

PolyHeme® = human polymerized hemoglobin (Northfield Laboratories Inc., Evanston, IL)

Hemolink® = hemoglobin raffimer (Hemosol Inc., Toronto, Ontario, Canada)

MP4 = Hemospan® = Maleimide-activated polyethylene glycol-modified hemoglobin (Sangart Inc., San Diego, CA)

TOOLS
Similar articles