Journal List > J Bacteriol Virol > v.46(1) > 1034245

Dinkov, Stratev, Balkanska, Sergelidis, and Vashin: Reduction Effect of Royal Jelly and Rape Honey Alone and in Combination Against Methicillin-Resistant Staphylococcus aureus (MRSA) Strains

Abstract

Multidrug resistant and methicilin-resistant Staphylococcus aureus (MRSA) is involved in severe difficult to treat skin and soft tissue infections in humans. In the present study the antibacterial reduction effect of royal jelly (RJ), rape honey (RH), as well as in combination (RJ:RH, 1:100 w/w) against multidrug resistant MRSA strains was evaluated by means of a microbiological method " in vitro". Royal jelly and rape honey mixture possessed a higher antibacterial activity than rape honey. The concentrations of royal jelly (20 and 30% v/v) had a total inhibitory effect against tested MRSA strains. Royal jelly alone and in rape honey mix (RJ:RH, 1:100 w/w) have a potential as alternative therapeutics against MRSA strains, resistant for antibiotics.

REFERENCES

1). Marcucci MC, Ferreres F, Garcia-Viguera C, Bankova VS, De Castro SL, Dantas AP, et al. Phenolic compounds from Brazilian propolis with pharmacological activities. J Ethnopharmacol. 2001; 74:105–12.
crossref
2). Cooper RA, Halas E, Molan PC. The efficacy of honey in inhibiting strains of Pseudomonas aeruginosa from infected burns. J Burn Care Rehabil. 2002; 23:366–70.
3). Moussa A, Saad A, Djebli ND, Meslem A, Benhalima AEK. Antifungal Activity of Four Honeys of Different Types from Algeria Against Pathogenic Yeast: Candida albicans and Rhodotorula sp. Int J Microbiol Res. 2011; 2:276–9.
4). Taormina PJ, Niemira BA, Beuchat LR. Inhibitory activity of honey against foodborne pathogens as influenced by the presence of hydrogen peroxide and level of antioxidant power. Int J Food Microbiol. 2001; 69:217–25.
crossref
5). Dustmann JH. Antibacterial effect of honey. Apiacta. 1979; 1:1–3.
6). Bogdanov S. Nature and Origin of the Antibacterial Substances in Honey. LWT – Food Science and Technology. 1997; 30:748–53.
crossref
7). Willix DJ, Molan PC, Harfoot CG. A comparison of the sensitivity of wound-infecting species of bacteria to the antibacterial activity of manuka honey and other honey. J Appl Bacteriol. 1992; 73:388–94.
crossref
8). Adams CJ, Boult CH, Deadman BJ, Farr JM, Grainger MN, Manley-Harris M, et al. Isolation by HPLC and characterisation of the bioactive fraction of New Zealand manuka (Leptospermum scoparium) honey. Carbohydr Res. 2008; 343:651–9.
crossref
9). Mavric E, Wittmann S, Barth G, Henle T. Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand. Mol Nutr Food Res. 2008; 52:483–9.
10). Blum MS, Novak AF, Taber S 3rd. 10-hydroxy-delta 2-decenoic acid, an antibiotic found in royal jelly. Science. 1959; 130:452–3.
11). Melliou E, Chinou I. Chemistry and bioactivity of royal jelly from Greece. J Agric Food Chem. 2005; 53:8987–92.
crossref
12). Dinkov D, Stratev D, Balkanska R. In vitro atibacterial activity of Royal Gelly against pathogen Escherichia coli. Vet J Rep Srpska (Banja Luka). 2014; 14:14–25.
crossref
13). Stratev D, Vashin I, Balkanska R, Dinkov D. Antibacterial activity of Royal jelly and rape honey against Aeromonas hydrophila (ATCC 7965). J Food Healh Sci. 2015; 1:64–74.
crossref
14). Antimicrobial resistance: Global Report on Surveillance. W. H. Organization;2014. http://apps.who.int/iris/bitstream/10665/112642/1/9789241564748_eng.pdf.
15). Molan PC. Honey as an Antimicrobial Agent. Springer;1997.
16). Kujumgiev A, Tsvetkova I, Serkedjieva Y, Bankova V, Christov R, Popov S. Antibacterial, antifungal and antiviral activity of propolis of different geographic origin. J Ethnopharmacol. 1999; 64:235–40.
crossref
17). Fontana R, Mendes MA, de Souza BM, Konno K, Cesar LM, Malaspina O, et al. Jelleines: a family of antimicrobial peptides from the Royal Jelly of honeybees (Apis mellifera). Peptides. 2004; 25:919–28.
crossref
18). Bogdanov S, Martin P, Lüllmann C, Borneck R. Harmonised Methods of the European Honey Commission. Elsevier;1997.
19). Oddo LP, Piana L, Bogdanov S, Bentabol A, Gotsiou P, Kerkvied J, et al. Botanical species giving unifloral honey in Europe. Apidologie. 2004; 35:S82–93.
crossref
20). Sergelidis D, Papadopoulos T, Komodromos D, Sergelidou E, Lazou T, Papagianni M, et al. Isolation of methicillin-resistant Staphylococcus aureus from small ruminants and their meat at slaughter and retail level in Greece. Lett Appl Microbiol. 2015; 61:498–503.
21). Balkanska R, Zhelyazkova I, Ignatova M. Physicochemical quality characteristics of royal jelly from three regions of Bulgaria. Agricultural Science & Technology. 2012; 4:302–5.
22). Sherlock O, Dolan A, Athman R, Power A, Gethin G, Cowman S, et al. Comparison of the antimicrobial activity of Ulmo honey from Chile and Manuka honey against methicillin-resistant Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. BMC Complement Altern Med. 2010; 10:47.
crossref
23). Patton T, Barrett J, Brennan J, Moran N. Use of a spectrophotometric bioassay for determination of microbial sensitivity to manuka honey. J Microbiol Methods. 2006; 64:84–95.
crossref
24). Alreshoodi FM, Sultanbawa Y. Antimicrobial Activity of Royal Jelly. Anti-Infective Agents. 2015; 13:50–9.
crossref
25). Bilikova K, Huang SC, Lin IP, Simuth J, Peng CC. Structure and antimicrobial activity relationship of royalisin, an antimicrobial peptide from royal jelly of Apis mellifera. Peptides. 2015; 68:190–6.
crossref
26). Fujiwara S, Imai J, Fujiwara M, Yaeshima T, Kawashima T, Kobayashi K. A potent antibacterial protein in royal jelly. Purification and determination of the primary structure of royalisin. J Biol Chem. 1990; 265:11333–7.
crossref
27). Boukraa L, Meslem A, Benhanifia M, Hammoudi SM. Synergistic effect of starch and royal jelly against Staphylococcus aureus and Escherichia coli. J Altern Complement Med. 2009; 15:755–7.
28). Boukraa L, Niar A, Benbarek H, Benhanifia M. Additive action of royal jelly and honey against Staphylococcus aureus. J Med Food. 2008; 11:190–2.
29). Alzahrani HA, Alsabehi R, Boukraa L, Abdellah F, Bellik Y, Bakhotmah BA. Antibacterial and antioxidant potency of floral honeys from different botanical and geographical origins. Molecules. 2012; 17:10540–9.
crossref

Table 1.
Physicochemical parameters of rape honey
Parameters Mean SD Maximum Minimum
Water content (%) 16.8 0.2108 17 16.6
Free acidity (meq.kg-1) 36.3 1.1595 38 35
рH 3.232 0.01032 3.25 3.22
Conductivity (mS.cm–1) 0.128 0.00105 0.13 0.127
Diastase activity (Ghote), (DN) 12.9 0.1051 13.1 12.8
Hydroxymethilfurfurol (HMF), (mg.kg-1) 14.89 0.3528 15.36 14.4
Invertase activity (IN) 10.643 0.0241 10.69 10.62
Specific optical rotation, [α] D 20 (-) 12 0.8164 (-) 13 (-) 11
Table 2.
Physicochemical characteristics of royal jelly
Parameters Mean SD Maximum Minimum
Water content (%) 62.7 1.43452 63.7 60.2
pH 3.97 0.07776 4.06 3.78
Total acidity (ml 0.1n NaOH/g) 4.08 0.38084 4.51 3.31
Electrical conductivity (μS/cm) 197 14.0791 224 180
Proteins (%) 16.94 1.37065 19.36 14.81
Fructose (%) 4.83 0.75832 6.19 3.59
Glucose (%) 3.85 0.99522 5.65 2.7
Sucrose (%) 1.70 0.86652 4.25 0.64
Table 3.
Experimental data for dilutions of 0.5 McFarland standard and isolation rate of tested MRSA strains on Baird Parker agar with 0.01 and 0.0025% w/v potassium telluride
Dilution of 0.5 McFarland standard % potassium telluride MRSA t127 CFU (0.1 ml) MRSA t548 CFU (0.1 ml) MRSA t4038 CFU (0.1 ml)
10-1 0.0025% > 107 > 107 > 107
  0.01% > 107 > 107 > 107
10-2 0.0025% > 106 > 106 > 106
  0.01% > 106 > 106 > 106
10-3 0.0025% > 105 > 105 > 105
  0.01% 284 / 125 > 105 > 105
10-4 0.0025% 165 / 185 388 / 369 349 / 336
  0.01% 98 / 82 176 / 173 3 / 3
10-5 0.0025% 45 / 36 59 / 31 45 / 33
  0.01% 6 / 4 18 / 17 2 / 0
10-6 0.0025% 8 / 3 7 / 4 6 / 2
  0.01% 0 / 0 1 / 0 0 / 0
10-7 0.0025% 1 / 0 1 / 0 0 / 0
  0.01% 0 / 0 0 / 0 0 / 0
Table 4.
Calculation and convertion to logarithmic CFU /ml for positive controls
Dilution Mean values from 2 Petri dishes Mean from two experiments CFU/ml log CFU/ml
1st experiment 2nd experiment
MRSA spa type t127
Positive control (contamination)
10-4 216 229 222.5 2.2 × 103 3.34
Positive control (10-4) after incubation for 24 h
10-5 146 169 157.5 1.6 × 108 8.2
10-6 Uncountable - - - -
MRSA spa type t548
Positive control (contamination)
10-4 148 152 150 1.5 × 103 3.17
Positive control (10-4) after incubation for 24 h
10-5 62 78 70 0.7 × 108 7.85
10-6 Uncountable - - - -
MRSA spa type t4038 Positive control (contamination)
10-4 155 170 162.5 1.6 × 103 3.2
Positive control (10-4) after incubation for 24 h
10-5 91 96 93.5 9.35 × 107 7.97
10-6 Uncountable - - - -
Table 5.
Antibacterial activity of Rape Honey (RP), Royal Jelly (RJ) and mix RJ:RH (1:100) at several concentrations in Tryptone Soy broth (TSB) against MRSA t127
Substance Positive control Concentration Counts after first experiment (24 h) Counts after second experiment (48 h)
Initial inoculum Count after 24 h
      10% >8 log CFU/ml >8 log CFU/ml
RH 3.34 log CFU/ml 8.2 log CFU/ml 20% 30% >8 log CFU/ml 3.53 CFU/ml >8 log CFU/ml 1.39 CFU/ml
      40% 0 0
      10% >8 log CFU/ml >8 log CFU/ml
RJ 3.34 log CFU/ml 8.2 log CFU/ml 20% 0 0
      30% 0 0
      10% >8 log CFU/ml >8 log CFU/ml
RJ:RH (1:100) 3.34 log CFU/ml 8.2 log CFU/ml 20% 30% 3.58 log CFU/ml 0 2.11 log CFU/ml 0
      40% 0 0
Table 6.
Antibacterial activity of Rape Honey (RP), Royal Jelly (RJ) and mix RJ:RH (1:100) at several concentrations in Tryptone Soy broth (TSB) against MRSA t548
Substance Positive control Concentration Counts after first experiment (24 h) Counts after second experiment (48 h)
Initial inoculum Count after 24 h
      10% >7 log CFU/ml >7 log CFU/ml
RH 3.17 log CFU/ml 7.85 log CFU/ml 20% 30% >7 log CFU/ml >7 log CFU/ml >7 log CFU/ml >7 log CFU/ml
      40% 3.54 log CFU/ml >7 log CFU/ml
      10% 0 0
RJ 3.17 log CFU/ml 7.85 log CFU/ml 20% 0 0
      30% 0 0
      10% >7 log CFU/ml >7 log CFU/ml
RJ:RH (1:100) 3.17 log CFU/ml 7.85 log CFU/ml 20% 30% >7 log CFU/ml >7 log CFU/ml >7 log CFU/ml >7 log CFU/ml
      40% 0 3.47 log CFU/ml
Table 7.
Antibacterial activity of Rape Honey (RP), Royal Jelly (RJ) and mix RJ:RH (1:100) at several concentrations in Tryptone Soy broth (TSB) against MRSA t4038
Substance Positive control Concentration Counts after first experiment (24 h) Counts after second experiment (48 h)
Initial inoculum Count after 24 h
      10% >7 log CFU/ml 3.47 log CFU/ml
RH 3.2 log CFU/ml 7.97 log CFU/ml 20% 30% >7 log CFU/ml 3.29 log CFU/ml 3.26 log CFU/ml 0
      40% 0 0
      10% 0 0
RJ 3.2 log CFU/ml 7.97 log CFU/ml 20% 0 0
      30% 0 0
      10% >7 log CFU/ml >7 log CFU/ml
RJ:RH (1:100) 3.2 log CFU/ml 7.97 log CFU/ml 20% 30% 0 0 0 0
      40% 0 0
TOOLS
Similar articles