Journal List > Korean J Physiol Pharmacol > v.13(6) > 1025642

Lee, Lee, Kim, Chung, Cho, and Kim: Type II and III Taste Bud Cells Preferentially Expressed Kainate Glutamate Receptors in Rats

Abstract

Glutamate-induced cobalt uptake reveals that non-NMDA glutamate receptors (GluRs) are present in rat taste bud cells. Previous studies involving glutamate induced cobalt staining suggest this uptake mainly occurs via kainate type GluRs. It is not known which of the 4 types of taste bud cells express subunits of kainate GluR. Circumvallate and foliate papillae of Sprague-Dawley rats (45∼60 days old) were used to search for the mRNAs of subunits of non-NMDA GluRs using RT-PCR with specific primers for GluR1–7, KA1 and KA2. We also performed RT-PCR for GluR5, KA1, PLCβ2, and NCAM/SNAP 25 in isolated single cells from taste buds. Taste epithelium, including circumvallate or foliate papilla, express mRNAs of GluR5 and KA1. However, non-taste tongue epithelium expresses no subunits of non-NMDA GluRs. Isolated single cell RT-PCR reveals that the mRNAs of GluR5 and KA1 are preferentially expressed in Type II and Type III cells over Type I cells.

References

Bigiani A. Mouse taste cells with glialike membrane properties. J Neurophysiol. 85:1552–1560. 2001.
crossref
Boughter Jr JD., Pumplin DW., Yu C., Christy RC., Smith DV. Differential expression of alpha-gustducin in taste bud populations of the rat and hamster. J Neurosci. 17:2852–2858. 1997.
Bowie D. External anions and cations distinguish between AMPA and kainate receptor gating mechanisms. J Physiol (London). 539:725–733. 2002.
crossref
Bradlley RM., King MS., Wang L., Shu X. Neurotransmitter and neuromodulator activity in the gustatory zone of the nucleus tractus solitarius. Chem Sens. 21:377–385. 1996.
Caicedo A., Kim KN., Roper SD. Glutamate-induced cobalt uptake reveals non-NMDA receptors in rat taste cells. J Comp Neurol. 417:315–324. 2000.
crossref
Castillo PE., Malenka RC., Nicoll RA. Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons. Nature. 388:182–186. 1997.
crossref
Chittajallu R., Vignes M., Dev KK., Barnes JM., Collingridge GL., Henley JM. Regulation of glutamate release by presynaptic kainate receptors in the hippocampus. Nature. 79:78–816. 1993.
crossref
Chung KM., Lee SB., Heur R., Cho YK., Lee CH., Jung HY., Chung SH., Lee SP., Kim KN. Glutamate-induced cobalt uptake elicited by kainate receptors in rat taste bud cells. Chem Senses. 30:137–143. 2005.
crossref
DeFazio RA., Dvoryanchikov G., Maruyama Y., Kim JW., Pereira E., Roper SD., Chaudhari N. Separate populations of receptor cells and presynaptic cells in mouse taste buds. J Neurosci. 26:3971–3980. 2006.
crossref
Dingledine R., Conn PJ. Peripheral Glutamate Receptors: molecular biology and role in taste sensation. J Nutr. 130:1039S–1042S. 2000.
crossref
Farbmann AI. Fine structure of taste bud. J Ultrastruct Res. 12:328–350. 1965.
Finger TE., Danilova V., Barrows J., Bartel DL., Vigers AJ., Stone L., Hellekant G., Kinnamon SC. ATP signaling is crucial for communication from taste buds to gustatory nerves. Science. 310:1495–1499. 2005.
crossref
Herness MS., Chen Y. Serotonin inhibits calcium-activated K+ current in rat taste receptor cells. NeuroReport. 8:3527–3261. 1997.
Herness MS., Zhao FL., Lu SG., Kaya N., Shen T., Sun XD. Adrenergic signaling between rat taste recepter cells. J Physiol (Lond). 543:601–614. 2002.
Huang YJ., Maruyama Y., Lu KS., Pereira E., Plonsky I., Baur JE., Wu D., Roper SD. Mouse taste buds use serotonin as a neurotransmitter. J Neurosci. 25:843–847. 2005.
crossref
Jain S., Roper SD. Immunocytochemistry of GABA, glutamate, serotonin, and histamine in Necturus taste buds. J Comp Neurol. 307:675–682. 1991.
Kim KN., Caicedo A., Roper SD. Glutamate-induced cobalt uptake reveals non-NMDA receptors in developing rat taste buds. NeuroReport. 12:1715–1718. 2001.
crossref
Lee SB., Lee CH., Cho YK., Chung KM., Kim KN. Expression of kainate glutamate receptors in type II cells in taste buds of rats. Int J Oral Biol. 33:83–89. 2008.
Lerma J. Roles, and rules of kainate receptors in synaptic transmission. Nat Rev Neurosci. 4:481–495. 2003.
crossref
Lindemann B. Taste reception. Physiol Rev. 76:719–766. 1996.
crossref
Madden DR. The structure and function of glutamate receptor ion channels. Nat Rev Neurosci. 3:91–101. 2002.
crossref
Mayer ML. Crystal structure of the GluR5 and GluR6 ligand binding cores: Molecular mechanisms underlying kainate receptor selectivity. Neuron. 45:539–552. 2005.
Mezei LM., Store DR. Purification of PCR products. Griffin HG, Griffin AM, editors. ed,. PCR technology: Current innovations. CRC Press;Boca Raton: p. p. 13–19. 1994.
Murray RG. Mammalian taste bud type III cell: a critical analysis. J Ultrastruct Mol Struct Res. 95:175–188. 1986.
Murray RG. The ultrastructure of taste buds. Friedmann I, editor. ed,. The ultrastructure of taste organs. Amsterdam, North Holland: p. p. 1–81. 1974.
Nagai T., Delay RJ., Welton J., Roper SD. Uptake and release of neurotransmitter candidates, [3H]serotonin, [3H]glutamate, and [3H]GABA, in taste buds of the mudpuppy. Nectrus maculosus. J Comp Neurol. 392:199–208. 1998.
Passafaro M., Nakagawa T., Sala C., Sheng M. GABAnergic neurotransmission in rat taste buds: immunocytochemical study for GABA and GABA transporter subtypes. Nature. 424:677–681. 2003.
Pumplin DW., Yu C., Smith DV. Light and dark cells of rat vallate taste buds are morphologically distinct cell types. J Comp Neurol. 378:380–410. 1997.
crossref
Raphael Y., Altschuler RA. Structure and innervation of the cochlea. Brain Res Bull. 60:397–422. 2003.
crossref
Roper SD. Cell communication in taste buds. Cell Mol Life Sci. 63:1494–1500. 2006.
Song I., Huganir RL. Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci. 25:578–588. 2002.
crossref
Yang R., Crowley HH., Rock ME., Kinnamon JC. Taste cells with synapses in rat circumvallate papillae display SNAP-25-like immunoreactivity. J Comp Neurol. 424:205–215. 2000.
crossref

Fig. 1.
Results of tissue RT-PCR of mRNA obtained from tongue epithelium and hippocampus. N, non-taste epithelium; F, epithelium including foliate papilla; CV, epithelium including circumvallate papilla; H, hippocampus as positive control; –, no tissue as negative control; M, size marker.
kjpp-13-455f1.tif
Fig. 2.
Representative isolated single cell RT-PCR results. Data is from 15 cells obtained from a single rat. Data from lanes 11 and 15 were discarded because both PLCβ2 and SNAP25 are expressed. Two cells express PLCβ2, another 2 cells express SNAP 25, 6 cell express GluR5, and 2 cells express KA1. Even cells in lanes 11 and 15 do not express KA1. However, GAPDH is expressed in all lanes except the negative control.
kjpp-13-455f2.tif
Fig. 3.
Results of isolated single cell RT-PCR for taste bud cells. Each column represents data from an individual taste cell. Each row indicates expression of different mRNAs.
kjpp-13-455f3.tif
Table 1.
DNA sequences, annealing temperatures, and expected product sizes of specific primers of subunits of non-NMDA glutamate receptors used in RT-PCR
Name   Sequence Annealing temperature (°C) Expected product size (bp)
GluR1 Sense GCT TCA TGG ACA TTG TA 40 623
  Antisense ATC TCA AGT CGG TAG GAG TA    
GluR2 Sense ATT GTA GAC TAC GAT GAT TC 40 643
  Antisense AAT AGT CAG CTT GTA CTT GA    
GluR3 Sense AAA CGA TAC TTG ATT GAC TG 40 655
  Antisense GCT GAT TTG TTG ATC TGA GA    
GluR4 Sense CCA CTG CTA GAA GAG CTT GA 40 612
  Antisense CAT ATC TTG AAT CAA GAC TA    
GluR5 Sense GCC CCT CTC ACC ATC ACA TAC 52 208
  Antisense ACC TCG CAA TCA CAA ACA GTA    
GluR6 Sense TTC CTG AAT CCT CTC TCC CCT 52 260
  Antisense CAC CAA ATG CCT CCC ACT ATC    
GluR7 Sense TGG AAC CCT ACC GCT ACT CG 52 356
  Antisense CCG CAA GCC ACT GGT TTT GTT    
KA1 Sense AGC GTT ATG TCA TGC CCA GAC CAG 52 316
  Antisense GGG GAG GAT CTG ACA CAT    
KA2 Sense TGC CCC GTG TCC TCA ACT CA 52 398
  Antisense CAC CGA CAC CTC CTC AGA CT    
Table 2.
DNA sequences, annealing temperatures and expected product sizes for specific primers used in RT-PCR to test specific markers for cell type in taste buds (positive control GAPDH)
Name   Sequence Annealing temperature (°C) Expected product size (bp)
PLCβ2 Sense CTG GAG GCT GAA GTA AAG GAG 40 623
  Antisense GCC CCT GCA TGT ATG TTA GG    
NCAM Sense TTG TGG GCA TCC TCA TTG TC 52 643
  Antisense TGT CAG TGG TGT GGT CTC GT    
SNAP25 Sense GGC AAT AAT CAG GAT GGA GTA G 58 612
  Antisense AGA TTT AAC CAC TTC CCA GCA    
GAPDH Sense TGG GGT GAT GCT GGT GCT GA 60 398
  Antisense CGC CTG CTT CAC CAC CTT CT    
Table 3.
Expression of GluR5, KA1, PLCβ2 and NCAM/SNAP25 in 146 isolated single taste bud cells from12 rats
  PLCβ2 NCAM/SNAP25 None Total
GluR5 17 7 27 51
KA1 6 2 4 12
GluR5 & KA1 1 2 3 6
None 18 8 51 77
Total 42 19 85 146
TOOLS
Similar articles