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Abstract
Iron deficiency anemia and anemia of chronic disorders are the most common types of 
anemia. Disorders of iron metabolism lead to different clinical scenarios such as iron defi-
ciency anemia, iron overload, iron overload with cataract and neurocognitive disorders. 
Regulation of iron in the body is a complex process and different regulatory proteins are 
involved in iron absorption and release from macrophages into hematopoietic tissues. 
Mutation in these regulatory genes is the most important cause of iron refractory iron 
deficiency anemia (IRIDA). This review provides a glance into the iron regulation process, 
diseases related to iron metabolism, and appropriate treatments at the molecular level.
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INTRODUCTION

Iron is a vital metal not only in hemoglobin synthesis 
but also in the structure of enzymes, cell growth and pro-
liferation, the immune system, and electron transfer in body 
chemical interactions [1]. One of the most important causes 
of iron deficiency is gastrointestinal bleeding and menstru-
ation in women [2]. One milliliter of packed RBCs contains 
one milligram of iron [3]. Diagnosis of iron deficiency anemia 
specifically in men is merely the beginning, as gastro-
intestinal study by endoscopy and colonoscopy must be per-
formed for polyps, ulcers, and cancer [4]. Treatment of ane-
mia resulting from bleeding requires sufficient iron resources 
for hematopoietic tissues. 

Erythroferrone
After bleeding, suppression of hepcidin gene expression 

causes an increase in gastrointestinal iron absorption and 
release of iron from cellular storage structures through the 
ferroportin channel [5, 6]. In response to erythropoietin 
(EPO), hematopoietic tissue secretes erythroferrone (ERFE). 
Erythroferrone can rapidly suppress hepcidin gene ex-
pression for iron absorption and release of iron from the 

reticuloendothelial system (Fig. 1) [7]. Disorders of eryth-
roferrone gene expression cause delayed increases in hemo-
globin during bleeding and increased erythroferrone ex-
pression may lead to iron overload [5]. It is supposed that 
one of the reasons for iron overload in thalassemia syndromes 
is the increase in erythroferrone gene expression [8].

Hepcidin and inflammatory disorders
Hepcidin gene expression increases in response to in-

creased iron storage, infections, and inflammation [9, 10]. 
Hepcidin destroys ferroportin channels (Fpn-1) by connect-
ing to them and thereby prevents gastrointestinal iron ab-
sorption and release of iron from macrophages [11, 12].

Despite the increase in ferritin levels in anemias of in-
flammatory and rheumatic disorders, IRIDA is observed [13]. 
Increased IL-6 in inflammatory diseases leads to hepcidin 
gene expression that eventually prevents iron absorption 
and release of iron toward erythropoietic tissues (Fig. 2) 
[14, 15].

Iron metabolism
Systemic regulation of iron metabolism is presented in 

Fig. 3. In Fig. 3A, the absorption process through gastro-
intestinal cells in the duodenum is shown. Iron is imported 
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Fig. 1. Erythroferrone is secreted 
from NRBCs in response to ery-
thropoietin. ERFE causes increased 
iron absorption in the gastro-
intestinal system and release of 
iron from macrophages through 
ferroportin by decreasing hepcidin 
synthesis and provides sufficient 
iron for hematopoietic tissue (Kautz 
and Nemeth, 2014).
Abbreviations: EPO, erythropoietin; 
HIF, hypoxia inducible factor; pO2, 
pressure of oxygen.

Fig. 2. Hepcidin mechanism. In in-
flammatory phenomena, increased 
hepcidin gene expression causes 
destruction of ferroportin. As a 
result, iron absorption and release 
of iron from macrophages is 
inhibited which eventually leads 
to anemia of chronic disorders.
Abbreviations: BMP6, bone morpho-
genetic protein 6; BMPR, bone 
morphogenetic protein receptor; 
HFE, human hemochromatosis 
protein; HJV, hemojuvelin; IL-6, 
interleukin 6; IL-6R, interleukin 6 
receptor; Tfr2, transferrin receptor 2.

through DMT1 (Divalent Metal Transporter) and exported 
through ferroportin [16]. Fig. 3B shows the iron transport 
to NRBCs (Nucleated red blood cells). Iron is transported 
by transferrin and upon binding to transferrin receptor 
(TFR), iron is released to the cytoplasm [17, 18]. The released 
iron is delivered to mitochondria by mitoferrin and the “Kiss 
and Run” process occurs, in which iron in endosomal vacuoles 
is released to mitochondria by direct contact with the mi-
tochondrial membrane [19].

Fig. 3C shows the hepatocyte that controls iron absorption 
and release of iron from macrophages by regulating hepcidin 
secretion (Fig. 3D). Complexes of hemochromatosis proteins 
(HFE), hemojuvelin (HJV), matriptase-2, transferrin receptor 

2 (TFR2), and BMP-6 (Bone morphogenetic protein) receptor 
on hepatocytes lead to hepcidin gene expression by activating 
SMAD and ERK-MAPK signaling pathways [20-25]. Loss 
or gain of function mutations in these regulatory proteins 
leads to iron overload by suppressing hepcidin gene ex-
pression [26]. Reduction of hepcidin causes iron absorption 
from ferroportin [27]. GDF15 (growth differentiation factor 
15), TWSG1 (twisted gastrulation 1), ERFE, and Matriptase 
2 reduce hepcidin synthesis and increase iron absorption 
in the gastrointestinal system and release of iron from macro-
phages [28].
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Fig. 3. Systemic regulation of iron absorption through the gastrointestinal system and release of iron from macrophages.
Abbreviations: DcytB, duodenal cytochrome B; Dmt1, divalent metal transporter 1; Fpn1, ferroportin1; GDF15, growth differentiation factor 15; 
Gpi-Cp, glycosylphosphatidylinositol-linked ceruloplasmin; HAMP, hepcidin anti-microbial peptide; HCP1, heme carrier protein 1; Heph, hepha-
estin; HO1, heme oxygenase 1; IL-R, interleukin receptor; MT2, matriptase 2; Mtf, metal regulatory transcription factor; PCBP1, poly (rC) binding 
protein 1; sCp, soluble ceruloplasmin; Tf, transferrin; TfR1, transferrin receptor 1; TWSG1, twisted gastrulation protein homolog 1. 

Role of microRNAs
Various microRNAs have a role in the expression of iron 

regulatory proteins. Increased or decreased microRNAs ex-
pression interferes in the translation process, causing an in-
crease or decrease in translation and eventually altering the 
expression of certain proteins [29]. MicroRNAs are composed 
of about 21 nucleotides and lead to destruction and pre-
vention of mRNA translation by hybridizing to them [30]. 
For instance, microRNA-130a expression is increased in iron 
deficiency and targets the mRNA of BMP receptor and causes 
reduction of hepcidin expression. In another example, reduc-
tion of microRNA-199a expression in response to hypoxia 
causes an increase of HIF-1 and HIF-2 expression that 
is subsequently accompanied by an increase in EPO synthesis 
[31, 32]. HIF factors (hypoxia inducible factors) are tran-
scription factors for EPO gene expression [33]. 

Iron overload
The most common disorders of iron metabolism are iron 

overload (type I to IV), iron overload with cataracts, iron 
deficiency anemia, anemia of chronic disorders, and iron 
refractory iron deficiency anemia (IRIDA) [34-36]. 

Mutations of hemochromatosis gene (HFE) or classic hemo-
chromatosis appear in women after menopause and in 
40-50-year-old men and are accompanied by iron overloads 
in heart, liver, and exocrine glands [37, 38]. Bronze skin, 
diabetes, and liver cirrhosis are complications of hemochro-
matosis that can lead to hepatocellular carcinoma [39]. Type 
II hemochromatosis, or juvenile type, is caused by mutations 
in the hepcidin gene (HAMP) or hemojuvelin (HJV) [40, 
41].

Transferrin saturation ≥55% and ferritin levels ≥200 
g/L are the most important screen tests for hemochromatosis 
[42]. A certain type of hemochromatosis is accompanied 
by ferritin more than 1,000 g/L and cataracts. In this sit-
uation, mutation in iron regulatory protein (IRP) prevents 
its binding to the iron response element of ferritin light 
chain mRNA so that suppression of ferritin synthesis does 
not occur [43].

Iron deficiency anemia
Iron deficiency anemia leads to reduction of serum iron, 

serum ferritin (SFt), and an increase in TIBC in progressive 
situations [44]. Since ferritin is an acute phase protein and 
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Table 2. Causes of iron deficiency anemia.

Inadequate dietary iron intake Increased iron requirements Increased iron losses Decreased iron absorption

• Single-food diets in infancy
• Dieting, fasting, 

malnutrition
• Diet containing inhibitors 

of iron absorption

• Growth spurts in childhood/ 
adolescence
• Menstruation 
• Pregnancy 
• Erythropoietin therapy

• Menorrhagia
• Bleeding from gastrointestinal, 

genitourinary tracts
• Hemosiderinuria due to intravascular 

hemolysis
• Parasitic infestations
• Exercise-related
• Blood donation 

• Celiac disease
• Autoimmune atrophic gastritis
• Helicobacter pylori gastritis
• IRIDA (hereditary)

Table 1. Diagnostic tests of iron deficiency anemia are observed in iron storage depletion, iron limitation for erythropoiesis, and progressive 
iron deficiency anemia. Note that microcytic-hypochromia is only observed in progressive iron deficiency.

Parameter Depletion of storage iron Iron-deficient erythropoiesis Iron deficiency anemia

1. Bone marrow iron stores Absent Absent Absent
2. S. ferritin Low Low Low
3. TIBC Normal Normal or increased Increased
4. FEP Normal Increased Increased
5. Transferrin saturation Normal Decreased Decreased
6. Hemoglobin Normal Decreased Decreased
7. MCV Normal Normal Decreased
8. Hypochromia Absent Absent Present 

increases in inflammatory and infectious processes, some 
physicians request CRP and ESR tests along with ferritin. 
The ferritin test is more reliable in negative CRP and ESR 
samples [45]. The first parameters of iron deficiency anemia 
are a reduction of CHR (reticulocyte hemoglobin) and an 
increase in RDW. Microcytic-hypochromia, an increase in 
RDW, and hypochromic pencil-shaped RBCs are observed 
in iron deficiency anemia when the anemia is in a progressive 
state and iron storage is depleted. In this situation, hemoglo-
bin is below 10 (ferritin＜10) and RBC count is ＜5 million 
per L (Table 1) [46]. Iron deficiency anemia rapidly responds 
to iron therapy and an increase in reticulocyte count is 
typically observed after 5 days [47]. By beginning treatment, 
RBCs become dimorphic and populations of hypochromic 
and normochromic RBCs can be observed in blood smears 
and after some time, they are converted to normo-
cytic-normochromic (Table 2) [48].

Within 3 weeks of treatment, hemoglobin typically in-
creases to about 2 grams and when the amount of ferritin 
increases to 50, iron consumption can be stopped [49]. For 
measuring ferritin, it is not necessary to stop iron con-
sumption and it can be measured any time of the day, whereas 
measurement of serum iron is suggested in the morning 
after fasting and daily alterations in serum iron (SFe) has 
been reported to be 30%. SFe is normal or increased in 
the morning and physiologically decreases in the evening. 
TIBC measurement is not highly affected by daily alterations. 
For measuring TIBC and SFe, iron consumption should be 
stopped for 2 or 3 days [50]. Any microcytic-hypochromic 
morphology that does not respond to iron therapy is classified 

into thalassemia syndromes, hemoglobinopathies, or IRIDA 
[51].

Iron refractory iron deficiency anemia
Iron refractory iron deficiency anemia can be inherited 

or acquired. A mutation in the TMPRSS6 gene that leads 
to disorders of matriptase-2 (MT2) synthesis is the most 
important inherited cause [52, 53]. In normal situations, 
MT2 inhibits the HJV protein’s connection with the BMP-6 
receptor and causes reduction of hepcidin gene expression 
[54], which is further accompanied by an increase in gastro-
intestinal iron absorption [55]. A mutation in MT2 causes 
an increase in hepcidin expression and destruction of ferro-
portin and thus iron absorption does not occur in this con-
dition [56].

For children who do not respond to iron therapy despite 
the confirmation of iron deficiency, an anti-TTG test for 
diagnosing celiac disease, H. pylori infection, and auto-
immune gastritis must be performed [57].

Pregnancy and iron status
In every pregnancy, according to the increased mass of 

red blood cells, needs of the fetus, and growth of placenta 
and delivery, the requirement of iron is increased [58]. 
Ferritin values less than 50 cause iron deficiency anemia 
in pregnant women, unless it is compensated with daily ab-
sorption of 3.5 mg of iron, and daily consumption of 20–30 
mg of iron in a biocompatible form is sufficient for compensa-
tion [59].
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Renal failure and iron deficiency
In renal failure patients who take EPO for treatment of 

anemia, the response to treatment can be predicted through 
transferrin saturation, free transferrin receptor in plasma 
(TFR), and ferritin levels [60-62]. Transferrin saturation less 
than 20% with TFR ＞8 mg/L and ferritin ＜50 g/L is 
a sign of iron deficiency and requires intravenous iron admin-
istration to increase ferritin levels to more than 100 g/L 
for a sufficient response in EPO in patients not receiving 
dialysis, while sufficient ferritin levels for a response in EPO 
in dialysis patients are more than 200 g/L [63, 64].

Inhibitor compounds of iron absorption
Increasing use of proton pump inhibitors (PPIs) for treating 

ulcers and gastrectomy is an important cause of iron defi-
ciency anemia. Gastric acid secretion is critical for iron ab-
sorption [65]. Tannic acid (tannate), phosphate, and phytate 
compounds prevent oral iron absorption [66, 67].

Megaloblastic anemia in accompaniment with iron deficiency 
anemia

Megaloblastic anemia exhibits characteristics of increased 
ovalomacrocytes (MCV＞100), as well as increased RDW, 
MCH, and normal MCHC [68]. Megaloblastic anemia can 
be differentiated from cold agglutination by normal MCHC 
because in cold agglutination, MCV, MCH, and MCHC are 
increased [69].

Presence of hypersegmented neutrophils with ovaloma-
crocytes confirms the diagnosis of megaloblastic anemia [70]. 
If megaloblastic anemia is accompanied by iron deficiency 
anemia, it will cover macrocytic morphology and hyper-
segmented neutrophils will typically be observed in periph-
eral blood [71]. With vitamin B12 or folic acid treatment, 
microcytic-hypochromic morphology associated with iron 
deficiency anemia is observed [72].

Treatments
There are different drugs and methods in order to amelio-

rate the disorders which relate to iron metabolism. In iron 
deficiency anemia, oral iron is the first-line treatment, but 
in some conditions it is ineffective or harmful such as in 
inflammatory diseases and heavy bleeding. In these con-
ditions, intravenous (IV) administration of iron is suggested 
and usually safe. Ferrous sulfate, gluconate, and fumarate 
are the most common oral iron formulations [73, 74]. In 
patients with non-dialysis-dependent chronic kidney disease 
and iron deficiency anemia, ferric citrate is effective and 
can correct anemia [75].

In hemochromatosis, venesection or phlebotomy, iron 
chelators and erythrocytapheresis are used for treatment but 
phlebotomy is the most acceptable method. In this method, 
the initial blood loss causes a reduction in hemoglobin stores 
of iron which helps erythropoiesis. It removes about 200-250 
mg of iron in each session [76, 77]. 

In iron refractory iron deficiency anemia, patients do not 
respond to oral iron treatment appropriately but partial cor-
rection of anemia has been seen in some patients after a 

long period of oral iron administration [78].

CONCLUSION

Different factors play a role in molecular regulation of 
iron that maintain iron homeostasis by regulating the en-
trance and exit of iron. Defects or mutations in each of 
these factors can cause different clinical conditions related 
to iron metabolism. These disorders may have genetic back-
grounds or can be generated by underlying diseases such 
as infection and inflammation. The most common disorders 
are iron deficiency anemia and anemia of chronic diseases, 
which can be diagnosed through hematological indices and 
genetic tests. Some patients respond to the usual treatments 
and some are resistant, especially those with IRIDA. Further 
studies are required to diagnose and treat these disorders.
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