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Abstract
Recent advancement in the radiotherapy technology has allowed conformal delivery of 
high doses of ionizing radiation precisely to the tumors while sparing large volume of the 
normal tissues, which have led to better clinical responses. Despite this technological 
advancement many advanced tumors often recur and they do so within the previously 
irradiated regions. How could tumors recur after receiving such high ablative doses of 
radiation? In this review, we outlined how radiation can elicit anti-tumor responses by 
introducing some of the cytokines that can be induced by ionizing radiation. We then dis-
cuss how tumor hypoxia, a major limiting factor responsible for failure of radiotherapy, 
may also negatively impact the anti-tumor responses. In addition, we highlight how there 
may be other populations of immune cells including regulatory T cells (Tregs), mye-
loid-derived suppressor cells (MDSCs), and tumor-associated macrophages (TAMs) that 
can be recruited to tumors interfering with the anti-tumor immunity. Finally, the impact 
of irradiation on tumor hypoxia and the immune responses according to different radio-
therapy regimen is also delineated. It is indeed an exciting time to see that radiotherapy 
is being combined with immunotherapy in the clinic and we hope that this review can 
add an excitement to the field. 
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INTRODUCTION

Since its discovery in the late 19th century by Röntgen, 
ionizing radiation has been utilized as one of the three 
(surgery, chemotherapy, and radiotherapy) most important 
treatment modalities for many types of cancers [1]. Ionizing 
radiation kills cells by inducing DNA damage, particularly 
DNA double-strand breaks, resulting from ionizations in or 
very close to the DNA [2]. Radiotherapy delivers radiation 
dose at a typical daily dose of around 2 Gy per fraction, 
5 times a week, and up to three weeks, in a regimen called 
‘fractionated irradiation’ [3]. Why use fractionated radio-
therapy? This is because the dose that can be delivered to 
patients is largely limited by their normal tissue toxicity. 
With the lack of dose delivery technology capable of limiting 
normal tissue exposure, normal tissue volumes in the conven-
tional radiotherapy have been typically much larger than 
the tumor volume itself [3]. Hence, the only option for deliv-
ering high tumor dose was to use fractionated irradiation 
regimen. 

Latest technological advancement in radiotherapy includ-
ing stereotactic radiosurgery (SRS) for the brain and stereo-
tactic ablative radiotherapy (SABR) for the extracranial tis-
sues can now deliver individual ablative high doses of radia-
tion (15–24 Gy) to the tumor volume with a very steep 
dose gradient using highly conformal techniques [1]. Major 
advantage this technology has brought in the field of radia-
tion oncology is the superior clinical response  while sig-
nificantly lowering normal tissue toxicity, due to the precise 
targeting ability sparing large volumes of the normal tissues 
[1]. However, tumors such as glioblastoma multiforme and 
lung cancers invariably recur and they often do so within 
the previously irradiated field [4-6]. 

How could tumors recur after such ablative doses of radio-
therapy? Cancer cells, of course, may bear mutations in many 
genes, some of which are involved in intrinsic radiation 
sensitivity, for example, epidermal growth factor receptor 
(EGFR) and DNA-dependent protine kinase catalytic subunit 
(DNA-PKcs) [7-9]. Some cancers may also harbor mutations 
in apoptotic genes including Tumor protein 53 (TP53) or 
BCL2 associated X protein (BAX) which can certainly affect 
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Fig. 1. Diagram outlining how 
ionizing radiation (IR) of tumors 
leads to anti-tumor responses  and 
how tumor hypoxia can interfere 
such loop. (A) Ionizing radiation 
can induce anti-tumor immunity 
via secreting various danger-asso-
ciated molecular pattern (DAMP) 
molecules, which can stimulate 
dendritic cells and cytotoxic T 
cells. (B) However tumor hypoxia 
can mediate various pathways, in 
which can counteract the anti- 
tumor immunity.
Abbreviations: DCs, dendritic cells; 
HMGB1, high mobility group 
protein box 1; ATP, adenosine 
triphosphate; HSPs, heat shock 
proteins; HIF-1, hypoxia-inducible 
factor-1; PD-L1, programmed 
death-ligand 1; VEGF, vascular 
endothelial growth factor; VEGFR- 
1, vascular endothelial growth 
factor receptor-1; CXCL- 12, C-X-C 
motif chemokine ligand 12; CXCR- 
4, C-X-C motif chemokine recep-
tor-4; MDSCs, myeloid- derived 
suppressor cells; TAMs, tumor- 
associated macrophages; MMP, 
matrix metalloproteinase; S100A8, 
S100 calcium-binding protein A8; 
IL-1, interleukin-1; IL-6, inter-
leukin-6; TNF-, tumor necrosis 
factor-.

the tumor response to irradiation [7, 10, 11]. Recently, we 
and others have reported that there are circulating cells, 
especially those bone marrow-derived cells such as myeloid 
cells, which can modulate the tumor response to radiotherapy 
[12]. In this review, we will discuss the mechanisms by 
which ionizing radiation induce immune responses. More 
specifically, anti-tumor immune responses, which should 
be able to bring superior clinical responses, will be summa-
rized. Then, it will be dicussed how tumor microenviron-
mental factors interferes this anti-tumor immune responses. 

INTERPLAY BETWEEN RADIATION AND 
IMMUNE RESPONSES

Anti-tumor immune responses
Ionizing radiation kills cancer cells by various mechanisms 

of cell death, including apoptosis, necrosis, mitotic catas-
trophe, and immunogenic cell death [13-18]. It has been 
demonstrated that both single high dose irradiation and frac-
tionated low dose irradiation to tumors lead to the induction 

of damage-associated molecular pattern (DAMP) molecules 
[19], including high mobility group protein box 1 (HMGB1), 
adenosine triphosphate (ATP), heat-shock proteins (HSPs), 
uric acid, and interleukin-1 (IL-1) [20] (Fig. 1). In theory, 
dendritic cells (DCs) should be able to take up these antigens 
for priming naïve T cells [21]. Furthermore, some irradiated 
tumors such as breast cancers have shown to release increased 
levels of granulocyte-macrophage colony-stimulating factor 
(GM-CSF) [22], the cytokine that induces DC differentiation 
from monocytes and hematopoietic progenitor cells (HPCs) 
[23]. In fact, some studies have shown that radiation facili-
tates DC maturation and migration [24] and an increase 
in tumor-reactive T cells [25] at ablative irradiation doses 
of 15–20 Gy. These results do suggest that ionizing radiation 
should bring a potent anti-tumor response. But in reality 
how could these anti-tumor immunity fail to trigger a potent 
anti-tumor response in some patients? 

Generation of tumor-specific CD8+ T cells generally re-
quires maturation of DCs capable of antigen uptake and 
presentation [13, 26, 27]. This indicates that DC maturation 
may be severely impaired in cancer patients. It has been 
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Table 1. Effects of hypoxia on immune cells of the tumor microenvironment. 

Immune cells Mechanism Effect Reference

BMDC CXCL-12-mediated recruitment Angiogenesis, tumor invasiveness [53, 56]
DC Impaired maturation Impaired T cell priming, homing to lymph node [30]
CD8+ T cell PD-L1 in tumor cell Suppression of CD8+ T cell function [31]

IL-10 secretion Immune suppression [39]
TAM VEGFR-1-mediated recruitment Tumor metastasis [57]

M2 polarization Immune suppression, tumor progression [68, 69]

Abbreviations: BMDC, bone marrow-derived cell; CXCL-12, C-X-C motif chemokine ligand 12; DC, dendritic cell; PD-L1, programmed 
death-ligand 1; IL-10, interleukin-10; TAM, tumor-associated macrophage; VEGFR-1, vascular endothelial growth factor receptor-1.

extensively demonstrated that tumor hypoxia is a common 
feature existing in many, if not all, of human and murine 
solid tumors [28]. Thomlinson and Gray first proposed some 
50 years ago a stream of necrotic cancer cells away from 
the functional blood vessels in histology sections [2]. Later, 
Brown proposed that fluctuation in the tumor blood flow 
may cause temporary conditions of low oxygen tensions, 
leading to acute hypoxic conditions [29]. Tumor hypoxia 
is well known to be a major hurdle for most anti-cancer 
drugs because of several reasons: hypoxic cancer cells are 
far away from blood vessels lowering the anti-cancer drug 
concentrations to be delivered to those hypoxic tumor cells; 
hypoxic cells proliferate much slower than well-oxygenated 
cells escaping the cytotoxic action of many conventional 
anti-cancer drugs that target rapidly proliferating cells; and 
hypoxia acts as a selective pressure for more mutations, for 
example selecting cells that have lost p53-mediated apoptosis 
[2]. In the perspective of the effect of tumor hypoxia on 
the anti-tumor immunity, hypoxia is known to inhibit ex-
pression of many differentiation and maturation markers 
including CD1, CD40, CD80, CD83, CD86, and major histo-
compatibility complex (MHC) class II molecules in response 
to lipopolysaccharide (LPS), the stimulatory capacity for T 
cell function, and DC homing to draining lymph node [30] 
(Table 1). Tumor hypoxia can further complicate the immune 
response by modulating expression of various molecules in 
cancer cells that are necessary for developing proper anti-tu-
mor immunity. For example, tumor hypoxia has been re-
ported to increase programmed death-ligand 1 (PD-L1) ex-
pression via activating hypoxia-inducible factor-1 (HIF-1) 
transcription factor in clear cell renal cell carcinoma [31]. 
PD-1 is an immune checkpoint receptor on T cell whose 
ligands, PD-L1 and PD-L2, are commonly being expressed 
in cancer cells and antigen presenting cells such as dendritic 
cells and macrophages [32-34]. Engage of PD ligands to PD-1 
leads to down-regulation of immune responses by blocking 
ZAP-70 phosphorylation and association with CD3- [35, 
36]. This signaling results in reducing PKC- activation, 
which activates NF-B transcription factor leading to pro-
duction of pro-inflammatory cytokines such as IL-2 [37]. 
Hence the use of PD-1 antibodies such as nivolumab, pem-
brolizumab, and pidilizumab, or PD-L1 antibodies including 
PD-L1BMS-936559, MPDL3280A, and MEDI-4736 are re-
ceiving much attention with a hope of much improved an-

ti-tumor responses [38]. Hypoxia has also shown to decrease 
proliferation of CD8+ tumor-infiltrating lymphocytes (TILs) 
and induce IL-10 immunosuppressive cytokine production [39]. 

Abscopal effect, originally proposed by R.H. Mole in 1953, 
describing the effect of radiation to the distant tumor site 
after local irradiation within the same organism [40], is prob-
ably the ultimate proof that irradiation can trigger potent 
anti-tumor response systemically. It has been proposed that 
this is mediated by radiation-induced anti-tumor T cells [41]. 
A number of preclinical studies have demonstrated that addi-
tion of other strategies including Flt3 ligand [42], macrophage 
inflammatory protein-1 (MIP-1) [43], or vaccine against 
tumor-associated antigen such as carcinoembryonic antigen 
(CEA) [44] can lead to tumor-specific abscopal effects by 
irradiation in mice. However, the fact that abscopal effect 
has been reported to be very rare both preclinically and 
clinically [20] and that the exact radiotherapy regimen re-
sponsible for such effect are not yet known suggest that 
much further work is needed to establish radiation-induced 
anti-tumor immunity. 

Pro-tumor immune responses
It has been extensively reported that irradiated cancer 

cells or tumors including stroma produce cytokine(s) and 
chemokine(s) such as tumor necrosis factor- (TNF-), 
IL-1, IL-1, IL-6, GM-CSF, and transforming growth fac-
tor- (TGF-) [20, 45, 46]. Released chemokines including 
C-C motif chemokine ligand 2 (CCL-2) and C-X-C motif 
chemokine ligand 12 (CXCL-12) can then act potently to 
recruit TILs into irradiated tumors [47]. There are many 
mechanisms by which ionizing radiation promotes the re-
lease of chemokines from tumors. For example, irradiation 
can result in upregulation of HIF either by killing aerobic 
cells resulting in an increase in tumor hypoxia [48, 49] or 
by reactive oxygen species (ROS) [50]-mediated inhibition 
of proline hydroxylase [51], the enzyme responsible for de-
grading HIF- subunits [52]. The HIF transcription factor 
is known to be able to induce numerous cytokines, chemo-
kines, and growth factors including CXCL-12, CCL-2 and 
vascular endothelial growth factor (VEGF) [53-55] (Fig. 1), 
all of which can potently recruit TILs. The TILs express 
cognate receptors for many of these chemokines, for example 
C-X-C motif chemokine receptor-4 (CXCR-4) for CXCL-12; 
and C-C motif chemokine receptor-7 (CCR7) for CCL-19 
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or CCL-21; vascular endothelial growth factor receptor-1 
(VEGFR-1) for VEGF and these interactions may further 
amplify the immune response. Although T-lymphocytes are 
also known to express CXCR-4, which in theory should 
be able to be recruited to CXCL-12-expressing tumors and 
potentiate ‘anti-tumor immunity’, a number of studies have 
shown that it is mostly myeloid cells including monocytes 
and macrophages that largely express CXCR-4 thereby being 
attracted to CXCL-12-expressing cancer cells [56, 57] (Fig. 1). 
Recruited monocytes can then reconstruct the irradiated 
and thereby being damaged tumor vasculature by expressing 
matrix metalloproteinase-9 (MMP-9) [58], S100 calcium- 
binding protein A8 (S100A8) chemoattractant proteins [12], 
or by releasing VEGF by themselves [59]. Other mechanisms 
by which irradiation can promote cytokine/chemokine secre-
tion also include activation of NF-B pathways, which results 
in production of various pro-inflammatory cytokines/chemo-
kines including TNF-, IL-1, and CXCL-12, which could 
then recruit TILs and induce pro-inflammatory micro-
environment [60]. 

Recruited TILs can then further release, even higher con-
centrations of many of the cytokines listed above or other 
cytokines, such as IL-1, IL-6, IL-10, TNF-, and TGF- 
[20]. It has been reported that CD4+ T cells are a major 
source for TGF- production [61-64] and that TGF- regu-
lates activation of CD8+ T cells and natural killer T (NKT) 
cells, maintenance of peripheral Foxp3-expressing regulatory 
T cells (Tregs), and survival of CD4+ T cells [65]. Although 
TGF- may elicit and potentiate anti-tumor CD8+ T cells, Tregs 
may counteract such anti-tumor activity by exerting immune 
suppression in co-operation with myeloid-derived suppressor 
cells (MDSCs) and tumor-associated macrophages (TAMs). 

MDSCs and TAMs may interfere with CD8+ T cell func-
tions in various ways. For examples, it has been shown that 
they express high levels of arginase-1 (Arg-1) thereby low-
ering arginine pool for T cell activation and responses [66]; 
they can also sequester cysteine thereby limiting the avail-
ability of cysteine, an amino acid essential for T cell pro-
liferation [50]; they may destroy T cell receptors (TCRs) 
by producing various ROS [67].

Tumor hypoxia may play an additional role in potentiating 
these pro-tumor immune responses. Indeed, it has been re-
ported that TAMs are more likely to be polarized towards 
M2-like pro-tumor phenotype by tumor hypoxia via activa-
tion of HIF transcription factor [68, 69] and that HIF can 
modify TAM functions such that it increases activities of 
Arg-1 and NADPH oxidase, which can then further com-
promise CD8+ cytotoxic functions towards cancer cells [50]. 
Both tumor hypoxia and radiation has been shown to induce 
epithelial mesenchymal transition (EMT) of certain cancers 
[70-72]. EMT is a key developmental program often activated 
during cancer invasion and metastasis. It is currently highly 
controversial whether EMT triggers anti-tumor response or 
provokes immune evasion. Although it is possible that an-
ti-tumor response may develop against EMT, it has been 
reported that SNAIL and ZEB families, transcription factors 
key to EMT process, are associated with increased CD4+/ 

Foxp3+ Tregs and impaired dendritic cell functions in mela-
nomas [73] and modulate PD-L1 in lung cancer cells [74]. 
Furthermore, TAMs have been reported to facilitate EMT 
in pancreatic cancer cells by IL-10 signaling pathway and 
other molecular mechanisms including increased matrix 
metalloproteases activities [75].

FACTORS TO CONSIDER UPON COMBINING 
RADIOTHERAPY WITH IMMUNOTHERAPY

Tumor hypoxia
We outlined above how hypoxia may negatively impact 

the effect of anti-tumor immunity towards cancers. 
Therefore, it would be essential to understand how tumor 
hypoxia changes along the course of radiotherapy. It is gen-
erally believed that ionizing radiation of solid tumors would 
initially result in an increase in hypoxic fractions. This is 
because DNA radicals produced by ionizing radiation can 
only be permanently fixed to give rise the DNA damage 
that can lead to cell death only in the presence of the molec-
ular oxygen, O2 [2]. Thus, radiation-induced cell kill would 
be initially confined to those of well-oxygenated cancer cells, 
leaving hypoxic tumor cells viable. Despite such obvious 
expectation, a number of recent studies indicate that this 
is not the case. It has been shown by using 18F-misonidazole 
(F-MISO) radioactive tracer and positron emission tomog-
raphy (PET) to monitor the dynamic changes in intratumoral 
hypoxia that 10 and 20 Gy ablative dose irradiated human 
head and neck squamous cell carcinoma xenografts had mini-
mal changes in the intratumoral hypoxia [76]. Our recent 
work with F-MISO has also demonstrated that there is no 
immediate increase in tumor hypoxia following 15 Gy abla-
tive radiation [77]. Although the degree of tumor hypoxia 
may not change dramatically after irradiation, the extent 
to which each individual may have in their tumors could 
be quite different. More importantly, tumor hypoxia is a 
dynamic process in which it constantly changes spatio-
temporally [78], which would affect the local immune cell 
functions thereby the immune responses. 

Radiotherapy regimen
Radiotherapy regimen would also influence the immune 

responses. Although ionizing radiation can increase MHC 
class I expression in a dose-dependent manner from 1 Gy 
up to 25 Gy and that the response could be maintained 
for up to 3 days [79], the anti-tumor immunity established 
by tumor-reactive T cells has been reported to be offset 
at the highest dose by an increase in Tregs [25]. Although 
preclinical study has reported that fractionated regimen of 
7.5 Gy/fraction as optimal for induction of anti-tumor im-
munity [25], we have recently demonstrated that fractionated 
irradiation can actually deplete tumor-infiltrating T cells 
leading to the tumor and metastasis recurrences [80]. In 
a preclinical study by Lugade and colleagues [81] it was 
shown that a single high dose irradiation of 15 Gy is superior 
to fractionated (5×3 Gy) irradiation in inducing anti-tumor 
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activities such as increased levels of antigen presenting cells 
and interferon- (IFN-) production in the lymph nodes. 
However, much further work needs to be done to investigate 
the detailed molecular mechanisms and immune responses 
associated with radiotherapy. 

CONCLUSIONS

It is an exciting time to have a superb technical advance-
ment in radiotherapy delivering ablative radiation doses pre-
cisely to the tumor bearing volume. Furthermore, promising 
clinical results of checkpoint blockades/immunotherapy fur-
ther boost the initiative of combining radiotherapy with 
immunotherapy. In theory, this advanced technique of radio-
therapy can significantly boost anti-tumor immune 
responses. In this review, we have outlined how tumor hypo-
xia, a major limiting factor contributing failures of chemo-
therapy and radiotherapy, can further complicate the anti-tu-
mor immune responses. Because tumor hypoxia is a dynamic 
pathophysiological feature in many solid tumors, it will be 
essential to investigate the real-time changes in tumor hypo-
xia with radiotherapy and how immune cells respond to-
wards this system. We believe this topic is of interest to 
not only cancer biologists, oncologists, and radiation oncolo-
gists but also numerous immunologists, which will soon bring 
us exciting imaging tools for monitoring dynamics of tumor 
hypoxia and real-time imaging of various populations of im-
mune cells simultaneously.
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