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Background: The ability of urinary biomarkers to complement established clinical risk pre-
diction models for postoperative adverse kidney events is unclear. We assessed the effect 
of urinary biomarkers linked to suspected pathogenesis of cardiac surgery-induced acute 
kidney injury (AKI) on the performance of the Cleveland Score, a risk assessment model 
for postoperative adverse kidney events.

Methods: This pilot study included 100 patients who underwent open-heart surgery. We 
determined improvements to the Cleveland Score when adding urinary biomarkers mea-
sured using clinical laboratory platforms (neutrophil gelatinase-associated lipocalin 
[NGAL], interleukin-6) and those in the preclinical stage (hepcidin-25, midkine, alpha-1 
microglobulin), all sampled immediately post-surgery. The primary endpoint was major 
adverse kidney events (MAKE), and the secondary endpoint was AKI. We performed ROC 
curve analysis, assessed baseline model performance (odds ratios [OR], 95% CI), and 
carried out statistical reclassification analyses to assess model improvement.

Results: NGAL (OR [95% CI] per 20 concentration-units wherever applicable): (1.07 
[1.01–1.14]), Interleukin-6 (1.51 [1.01–2.26]), midkine (1.01 [1.00–1.02]), 1-hepci-
din-25 (1.08 [1.00–1.17]), and NGAL/hepcidin-ratio (2.91 [1.30–6.49]) were indepen-
dent predictors of MAKE and AKI (1.38 [1.03–1.85], 1.08 [1.01–1.15], 1.01 [1.00–1.02], 
1.09 [1.01–1.18], and 3.45 [1.54–7.72]). Category-free net reclassification improvement 
identified interleukin-6 as a model-improving biomarker for MAKE and NGAL for AKI. 
However, only NGAL/hepcidin-25 improved model performance for event- and event-free 
patients for MAKE and AKI.

Conclusions: NGAL and interleukin-6 measured immediately post cardiac surgery may 
complement the Cleveland Score. The combination of biomarkers with hepcidin-25 may 
further improve diagnostic discrimination. 
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INTRODUCTION

Acute kidney injury (AKI) is a common and serious complica-

tion of cardiac surgery with incremental, stage-dependent wors-

ening of prognosis [1]. The most recent clinical practice guide-

lines for AKI highlight the importance of earliest possible detec-

tion of AKI and adjustment of treatment accordingly [2]. In pa-

tients undergoing cardiac surgery, treating physicians may con-

sult clinical variable-based risk assessment models to predict 

postoperative adverse kidney events, especially the widely ad-

opted Cleveland Score [3, 4]. However, additional pathophysio-

logical information derived from kidney biomarker analysis and 

clinical information are needed, as risk assessment based solely 

on preoperative information may not be sufficiently accurate. 

Additionally, an established clinical risk model combining pre-

operative and intraoperative information on kidney risk/response 

is not yet available.

Recently, kidney injury biomarkers have been included in AKI 

definition and risk assessment to complement established renal 

functional criteria [5]. However, a candidate biomarker should 

be able to improve a reference model in order to be of diagnos-

tic or prognostic benefit [6]. Oxido-inflammatory stress and iron 

metabolism are involved in the pathogenesis of cardiac surgery-

associated AKI [1, 7]. Given that, in a single patient, several 

pathomechanisms may be simultaneously active to cause AKI, 

it may be reasonable to analyze biomarkers in the urine linked 

to oxido-inflammatory stress and iron metabolism, such as in-

terleukin-6, neutrophil gelatinase-associated lipocalin (NGAL), 

hepcidin-25, and alpha-1 microglobulin.  

Interleukin-6 is a proinflammatory acute phase response cy-

tokine that was recently found to be elevated in the urine of pa-

tients with acute tubular injury [8, 9]. Both NGAL [10] and hep-

cidin-25 are regulators of tubular iron metabolism [7, 11]. Al-

pha-1 microglobulin is another member of the lipocalin super-

family involved in heme degradation, and, when found in-

creased in urine may indicate proximal tubular injury [12]. Mid-

kine cannot be filtered through the glomerular basement mem-

branes, pointing to generation through tubular injury induced by 

ischemia and hypoxia when found in urine [13, 14]. Postopera-

tively, increased urinary concentrations of hepcidin-25 were 

found in non-AKI patients suggesting renal-protective capability 

[15, 16].

Finally, data regarding prediction of MAKE or AKI in conjunc-

tion with the Cleveland Score is unavailable. Therefore, we 

aimed to identify the urinary kidney injury biomarkers or bio-

marker combination with the best possible additive predictive 

ability for adverse kidney-related events post-cardiac surgery. 

We hypothesized that the predictive ability of above-mentioned 

urinary biomarkers could improve the predictive performance of 

the Cleveland Score. 

METHODS

Patients and setting
This exploratory ancillary study of the BIC-Multicenter Study 

used a cohort of 100 patients who underwent elective open-

heart surgery with the use of cardio-pulmonary bypass (CPB), 

enrolled as a control group at the German Heart Center, Berlin, 

Germany (NCT00672334) from January 2009 through June 

2010 (Fig. 1). Full study details have been described previously 

[17]. This study was approved by the Institutional Review Board 

of Charité University Medicine Ethics Committee, Berlin, Ger-

many (approval no.: ZS EK 11 654/07), and written informed 

consent was obtained from each patient. We excluded patients 

undergoing emergency operations (time between hospital ad-

mission to operation <24 hours) or off-pump surgery, patients 

presenting with advanced chronic kidney disease (serum creati-

Fig. 1. Patient flow diagram.

N=200 patients enrolled at primary study center
(German Heart Center Berlin)

N=200 patients randomized to receive
N=100 verum (sodium bicarbonate)
N=100 placebo (sodium chloride)

N=100 patients receiving placebo (control group)
included in pilot study

N=350 patients undergoing open heart surgery 
enrolled in a multicenter randomized controlled trial 

(ClinicalTrials.gov NCT00672334)

N=150 from secondary study 
centers excluded

(Measurement of biomarker panel 
was performed at the primary 

study center, only.)

N=100 patients receiving 
verum excluded
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nine >300 µmol/L) or kidney transplant, patients <18 years, 

patients on immunosuppression medication, and those enrolled 

in a conflicting research study. Decisions regarding all diagnos-

tic and therapeutic interventions were performed by the inten-

sive care physicians, independent of this investigation. 

Study endpoints 
The primary endpoint was the development of MAKE, including 

alternatively occurring events of RIFLE-AKI stages Injury or Fail-

ure (Risk, Injury, Failure, End-stage renal disease classification 

[18]), persistent AKI >48 hours, acute renal replacement ther-

apy (RRT) initiation, and in-hospital mortality. The secondary 

endpoint was AKI, defined and classified by severity according 

to the RIFLE criteria based on increases in postoperative serum 

creatinine concentration compared with the preoperative base-

line concentration, as well as urine output criteria [18]. We 

chose the RIFLE criteria because they tend to have a higher 

discriminative value in predicting hospital mortality in cardiac 

surgery patients than the Acute Kidney Injury Network or Kidney 

Disease Improving Global Outcome criteria [19, 20]. 

Biomarker sampling and measurement 
We obtained urine at 6 hours (referred to as ‘intensive care unit 

[ICU] admission’) after commencement of CPB. Sampling was 

performed as previously described [17]. NGAL concentration 

(ng/mL) was measured using an ARCHITECT Analyzer (Abbott 

Diagnostics, Abbott Park, IL, USA). Interleukin-6 (pg/mL) and 

alpha-1 microglobulin (ng/mL) concentrations were determined 

using the Cobas e/c411 Immunoassay Analyzer Platform 

(Roche Diagnostics, Mannheim, Germany). ELISA kits were 

used to measure midkine (pg/mL; PeproTech, Hamburg, Ger-

many) and hepcidin-25 (ng/mL, C-ELISA, Intrinsic Lifesciences, 

LLC, La Jolla, CA, USA), according to the manufacturer’s in-

structions [21]. 

Serum creatinine was measured using the enzymatic method 

standardized by isotope dilution mass spectroscopy (Cobas 

8000 modular analyzer, Roche Diagnostics). Laboratory investi-

gators were blinded to the sample sources and clinical outcome.

Statistical analysis 
We assessed the discriminative ability and performance of can-

didate biomarkers to predict study endpoints in a stepwise ap-

proach: First, the area under the ROC curve (AUC) based on 

biomarker concentrations and biomarker/hepcidin-25-ratios 

measured at ICU admission in conjunction with clinical study 

endpoints was calculated separately for each marker or ratio (for 

hepcidin-25, a marker for absence of MAKE and AKI, with re-

versed orientation indicated as 1-hepcidin-25).

The following variables from the Cleveland kidney risk assess-

ment model were included into the reference logistic regression 

model [3]: gender, congestive heart failure defined as NYHA 

(New York Hearth Association classification) class 3 or 4 or left 

ventricular ejection fraction (LVEF) <35%, chronic kidney dis-

ease defined as preoperative creatinine >120 µmol/L, insulin-

dependent diabetes mellitus, chronic obstructive pulmonary 

disease, history of previous cardiac surgery, and type of surgery 

(defined as coronary artery bypass graft [CABG], valve proce-

dure or concomitant procedure). We did not include the vari-

ables “emergency surgery” and “use of intra-aortic balloon 

pump (IABP)” from the original model as all patients underwent 

elective open-heart surgery and no patient required IABP [3]. 

The predictive performance of the risk assessment models is 

reported as AUC for the derived multivariate scores with a 95% 

confidence interval (CI). 

Thereafter, we sequentially included each biomarker sepa-

rately into the reference model to exclude interaction. The 

model odds ratio (Exp [B]) was calculated to assess the ability 

of a biomarker to independently predict the study endpoints. 

The goodness of fit of each logistic regression was assessed us-

ing the Hosmer-Lemeshow test.

Reclassification statistics offer additional information not avail-

able from the AUC for the quantification of incremental im-

provements in multivariate model performance following the ad-

dition of a candidate biomarker to a reference model [6]. There-

fore, improvements in the performance of the reference model 

following the addition of a urinary biomarker were evaluated by 

net reclassification improvement (NRI) (reported as category-

free NRI [cfNRI] to overcome the shortcomings of NRI), and the 

integrated discrimination improvement (IDI) illustrated as risk 

assessment plots [22]. 

To better quantify how accurately the reference and reclassifi-

cation model would perform with independent data, we adopted 

a leave-one-out cross-validation. Logarithmic transformations 

were applied when necessary. SPSS, version 25.0 (IBM Corp., 

Armonk, NY, USA) and SAS, version 9.4 (SAS Institute Inc., 

Cary, NC, USA) were used for statistical analysis. P <0.05 (two-

sided) was considered statistically significant.

RESULTS

Patient characteristics
Patient baseline characteristics are shown in Table 1. Patients 



Albert C, et al.
Urinary biomarkers may complement the Cleveland Score

134  www.annlabmed.org https://doi.org/10.3343/alm.2020.40.2.131

with postoperative MAKE or AKI were older and more likely to 

have left ventricular dysfunction than patients without MAKE or 

AKI. Patients with MAKE more frequently had lower baseline es-

timated glomerular filtration rate (eGFR) than those without 

MAKE. Type of surgery and gender were similar in patients with 

and without MAKE or AKI. AKI was associated with increased 

risk of acute RRT initiation (P =0.005) and in-hospital mortality 

(P =0.001).

Table 1. Perioperative patient characteristics 

Variable
No MAKE
N=91

MAKE
N=9

P*
No AKI
N=91

AKI
N=9

P†

Age (yr) 67 (56–73) 74 (70–77) 0.013 67 (56–73) 74 (70–74) 0.015

Sex, female, N (%) 30 (33.3) 3 (33.3) 1.000 31 (34.1) 2 (22.2) 0.377

Insulin-dependent diabetes 
mellitus, N (%)

4 (4.4) 0 (0) 1.000 4 (4.4) 0 (0) 1.000

Arterial hypertension, N (%) 66 (72.5) 7 (77.8) 0.735 65 (71.4) 8 (88.9) 0.439

Preoperative creatinine >120 
µmol/L, N (%)

8 (8.8) 4 (44.4) 0.011 10 (11.0) 2 (22.2) 0.294

Preoperative serum creatinine 
(µmol/L)

86.6 (77.8–101.7) 105 (77–159) 0.185 87 (78–105) 88.0 (77.0–127.5) 0.558

Preoperative eGFR mL/min (CKD-
EPI)

72.8 (58.8–86.9) 53.6 (38.5–85.1) 0.057 71.9 (57.2–86.9) 57.1 (48.3–85.1) 0.226

Left ventricular dysfunction,  
N (%)‡

15 (16.5) 4 (44.4) 0.064 15 (16.5) 4 (44.4) 0.064

Chronic obstructive pulmonary 
disease, N (%)

2 (22.2) 9 (9.9) 0.257 8 (8.8) 3 (33.3) 0.058

Procedures

   CABG surgery, N (%) 17 (18.7) 2 (22.2) 0.679 17 (18.7) 2 (22.2) 0.679

   Valvular surgery, N (%) 46 (50.5) 3 (33.3) 0.488 45 (49.5) 4 (44.4) 1.000

   CABG and valvular surgery,  
N (%)

21 (23.1) 4 (44.4) 0.222 22 (24.2) 3 (33.3) 0.687

   Redo cardiac surgery, N (%) 27 (29.7) 1 (11.1) 0.438 26 (28.6) 2 (22.2) 1.000

Biomarker Concentrations 6 hours after commencement of CPB

   NGAL (ng/mL) 7.50 (0.70–25.40) 69.10 (28.95–361.25) 0.010 7.50 (0.20–25.40) 108.30 (28.95–361.25) 0.002

   Interleukin-6 (pg/mL) 6.21 (3.54–15.45) 45.59 (20.71–189.99) 0.001 6.21 (3.53–15.59) 45.59 (15.03–189.99) 0.001

   Midkine (pg/mL) 126.50 (96.13–234.63) 569.50 (132.50–4,044.50) 0.011 124.75 (94.63–232.75) 569.50 (208.25–4,044.50) 0.001

   Hepcidin-25 (ng/mL) 792.70 (254.70–1,565.80) 80.30 (44.40–445.20) 0.001 792.70 (254.70–1,565.80) 89.00 (56.30–501.65) 0.004

   Alpha-1 microglobulin (ng/mL) 18.40 (13.20–31.30) 11.40 (6.89–29.30) 0.132 18.10 (12.10–30.10) 15.90 (8.53–53.05) 0.665

Adverse Outcome

   Postoperative renal 
replacement therapy, N (%)

0 (0) 5 (55.6) <0.001 2 (2.2) 3 (33.3) 0.005

   In-hospital mortality, N (%) 0 (0) 3 (33.3) 0.001 0 (0) 3 (33.3) 0.001

   MAKE, N (%)              -                - - 2 (2.2) 7 (77.8) <0.001

   AKI, N (%) 2 (2.2) 7 (77.8) <0.001     -      - -

Numbers denote median (25th–75th percentile) or N (%) where appropriate. 
*P for MAKE vs. No-MAKE; †P refers to comparison between AKI and No AKI patients; ‡Congestive heart failure defined as NYHA class 3 or 4 or LVEF 
<35%.
Abbreviations: AKI, acute kidney injury; CABG, coronary artery bypass graft; CKD-EPI, Chronic Kidney Disease Epidemiology Collaboration equation for esti-
mation of glomerular filtration rate; CPB, cardio-pulmonary bypass; eGFR, estimated glomerular filtration rate; MAKE, major adverse kidney events; NGAL, 
urine neutrophil gelatinase associated lipocalin; RIFLE, risk injury failure end-stage renal disease classification [18]; NYHA, New York Hearth Association 
classification; LVEF, left ventricular ejection fraction.
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Fig. 2. Ranking of assessed urinary biomarker performance according to the univariate AUC (with 95% confidence interval bars) at ICU 
admission for predicting (A) MAKE and (B) AKI. 
Abbreviations: NGAL, neutrophil gelatinase-associated lipocalin; ICU, intensive care unit; AUC, area under the ROC curve; MAKE, major adverse kidney 
events; AKI, acute kidney injury. 
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Discriminative performance of urinary biomarkers
For MAKE, interleukin-6 and 1-hepcidin-25 had an AUC of 0.83 

(0.68–0.98) and 0.83 (0.72–0.94), respectively. For AKI, NGAL 

had an AUC of 0.81 (0.67–0.94), interleukin-6 0.82 (0.69–

0.96), and midkine 0.83 (0.69–0.96). Alpha-1 microglobulin 

was not predictive for either MAKE or AKI (AUC <0.5). The 

AUC findings for all biomarkers were higher when the biomarker 

combinations were expressed as 1/hepcidin-25 ratios. NGAL/

hepcidin-25 ratio was the best performing biomarker for AKI 

(AUC 0.89 [0.82–0.97]), while interleukin-6/hepcidin-25 dem-

onstrated the highest discriminative performance for MAKE, 

with an AUC of 0.91 (0.79–1.00). The univariate AUC values 

are shown in Fig. 2.

Urinary biomarkers as independent predictors of MAKE or AKI 
We found that NGAL, interleukin-6, midkine, hepcidin-25, and 

NGAL/hepcidin-25 were independent predictors of MAKE, while 

NGAL, interleukin-6, midkine, their hepcidin-25 ratios and hep-

cidin-25 were independent predictors of AKI using multivariate 

logistic regression based on the Cleveland Score (Table 2 and 

Supplemental Data Table S1). Alpha-1 microglobulin and al-

pha-1 microglobulin/hepcidin-25 were not independently asso-

ciated with MAKE or AKI.

Estimation of improvement of the Cleveland Score with 
added urinary biomarker data 
The cross-validated baseline performance characterized by 

AUC for the Cleveland reference models was 0.84 (0.73–0.96) 

for MAKE and 0.79 (0.66–0.91) for AKI. The goodness of fit in-

dicated good calibration of the reference kidney risk assessment 

model for both endpoints (MAKE: Hosmer-Lemeshow, P = 

0.864; -2 Log likelihood, 51.33; AKI: Hosmer-Lemeshow, P = 
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Midkine

Alpha-1 Microglobulin/Hepcidin-25
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0.79 (0.67-0.92)

0.46 (0.23-0.69)

MAKE

AKI
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0.968; -2 Log likelihood, 45.28).

The AUC performance of the new model compared with the 

reference model with 95% CI (orange) is illustrated in Fig. 3. 

Generally, the addition of urinary biomarkers NGAL, interleukin-6, 

and midkine, as well as corresponding 1/hepcidin-25 ratios im-

proved the reference model for MAKE and AKI, while alpha-1 

microglobulin did not improve model performance (Table 2).

Risk assessment plots illustrating the performance of the ref-

erence kidney risk model and the new model are shown in Fig. 

4 and Supplemental Data Fig. S1 and S2. Interleukin-6 im-

proved MAKE prediction for events and non-events; however, 

for AKI this was only true for non-events. In contrast, NGAL im-

proved cfNRI-based AKI prediction of the Cleveland Score for 

events and non-events; however, for MAKE this was only true for 

non-events. Only the addition of the NGAL/hepcidin-25 ratio im-

proved the reference model for both MAKE and AKI events and 

non-events. Midkine and the midkine/hepcidin-25 ratio im-

proved the cfNRI-based prediction of the reference model only 

for non-events of MAKE and AKI. Finally, IDI, which takes into 

account the magnitude of changes in predicted risk, showed no 

improvement for all biomarkers for both endpoints. 

DISCUSSION

This pilot study used established reclassification metrics to as-

sess the incremental value of various urinary biomarkers added 

Fig. 3. Ranking of kidney risk prediction model performance to predict (A) MAKE and (B) AKI according to the area under the ROC curve 
(AUC with 95% confidence interval [CI] bars) with added urinary kidney injury biomarker at ICU admission (new model) and without (refer-
ence model [3], 95% CI highlighted orange). 
Abbreviations: MAKE, major adverse kidney events; AKI, acute kidney injury; NGAL, neutrophil gelatinase-associated lipocalin; AUC, area under the ROC 
curve.
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Table 2. Category-free net reclassification improvement (cfNRI) and integrated discrimination improvement (IDI) of selected urinary bio-
markers measured at ICU admission

MAKE as dependent endpoint AKI as dependent endpoint

Estimate (95% CI) P Estimate (95% CI) P Estimate (95% CI) P Estimate (95% CI) P

NGAL NGAL/Hepcidin-25 NGAL NGAL/Hepcidin-25

Exp (B) 1.003 (1.000–1.006) 0.032 2.905 (1.301–6.489) 0.009 1.004 (1.001–1.007) 0.016 3.453 (1.544–7.723) 0.003

cfNRIevents 0.333 (-0.283–0.949) 0.289 0.556 (0.012–1.099) 0.045 0.556 (0.012–1.099) 0.045 0.556 (0.012–1.099) 0.045

cfNRInonevents 0.802 (0.680–0.925) <0.001 0.758 (0.624–0.892) <0.001 0.670 (0.518–0.823) <0.001 0.582 (0.415–0.749) <0.001

cfNRI 1.136 (0.508–1.764) <0.001 1.314 (0.754–1.873) <0.001 1.226 (0.662–1.790) <0.001 1.138 (0.570–1.706) <0.001

IDIevents 0.082 (-0.132–0.295) 0.454 0.073 (-0.144–0.291) 0.509 0.162 (0.012–0.336) 0.068 0.176 (-0.001–0.352) 0.051

IDInonevents -0.006 (-0.027–0.014) 0.550 -0.006 (-0.028–0.017) 0.625 0.015 (0.045–0.016) 0.342 -0.016 (-0.047–0.016) 0.333

IDI 0.075 (-0.139–0.290) 0.491 0.068 (-0.151–0.286) 0.543 0.147 (0.029–0.324) 0.102 0.160 (-0.019–0.339) 0.081

AUCdifference 0.051 (-0.044–0.147) 0.291 0.049 (-0.078–0.175) 0.449 0.085 (-0.049–0.220) 0.212 0.079 (-0.088–0.246) 0.351

Interleukin-6 Interleukin-6/Hepcidin-25 Interleukin-6 Interleukin-6/Hepcidin-25

Exp (B) 1.021 (1.000–1.042) 0.047 5.533 (0.994–30.794) 0.051 1.016 (1.001–1.031) 0.032 6.092 (1.093–33.962) 0.039

cfNRIevents 0.556 (0.012–1.099) 0.045 0.556 (0.012–1.099) 0.045 0.333 (-0.283–0.949) 0.289 0.333 (-0.283–0.949) 0.289

cfNRInonevents 0.733 (0.593–0.874) <0.001 0.556 (0.384–0.727) <0.001 0.533 (0.359–0.708) <0.001 0.422 (0.235–0.610) <0.001

cfNRI 1.289 (0.728–1.850) <0.001 1.111 (0.541–1.681) <0.001 0.867 (0.226–1.507) 0.008 0.756 (0.112–1.399) 0.021

IDIevents 0.122 (-0.121–0.364) 0.325 0.097 (-0.144–0.339) 0.429 0.138 (-0.067–0.343) 0.186 0.173 (-0.028–0.373) 0.091

IDInonevents -0.009 (-0.038–0.021) 0.567 -0.011 (-0.035–0.013) 0.382 -0.009 (-0.033–0.015) 0.463 -0.013 (-0.039–0.013) 0.331

IDI 0.113 (-0.131–0.357) 0.363 0.087 (-0.156–0.329) 0.484 0.129 (-0.077–0.335) 0.219 0.160 (-0.043–0.362) 0.122

AUCdifference 0.089 (-0.006–0.183) 0.065 0.064 (-0.068–0.197) 0.342 0.085 (-0.007–0.177) 0.069 0.114 (0.007–0.220) 0.036

Midkine Midkine/Hepcidin-25 Midkine Midkine/Hepcidin-25

Exp (B) 1.001 (1.000–1.001) 0.031 1.115 (0.990–1.256) 0.072 1.001 (1.000–1.001) 0.020 1.163 (1.001–1.350) 0.048

cfNRIevents 0.111 (-0.538–0.760) 0.737 0.333 (-0.283–0.949) 0.289 0.333 (-0.283–0.949) 0.289 0.111 (-0.538–0.760) 0.737

cfNRInonevents 0.756 (0.620–0.891) <0.001 0.711 (0.566–0.856) <0.001 0.733 (0.593–0.874) <0.001 0.578 (0.409–0.746) <0.001

cfNRI 0.867 (0.203–1.530) 0.010 1.044 (0.412–1.677) 0.001 1.067 (0.435–1.698) 0.001 0.689 (0.018–1.360) 0.044

IDIevents 0.073 (-0.042–0.188) 0.213 0.013 (-0.174–0.200) 0.890 0.071 (-0.089–0.232) 0.383 0.119 (-0.069–0.306) 0.215

IDInonevents -0.007 (-0.035–0.021) 0.603 -0.006 (-0.026–0.015) 0.587 -0.004 (-0.029–0.021) 0.752 -0.009 (-0.033–0.015) 0.468

IDI 0.066 (-0.053–0.184) 0.277 0.008 (-0.181–0.196) 0.938 0.068 (-0.095–0.230) 0.415 0.110 (-0.079–0.299) 0.255

AUCdifference 0.065 (-0.025–0.156) 0.157 0.056 (-0.061–0.173) 0.352 0.058 (-0.045–0.161) 0.269 0.081 (-0.023–0.186) 0.128

Alpha-1 Microglobulin Alpha-1 Microglobulin/Hepcidin-25 Alpha-1 Microglobulin Alpha-1 Microglobulin/Hepcidin-25

Exp (B) 0.993 (0.972–1.014) 0.493 1.676 (0.443–6.335) 0.447 0.979 (0.933–1.027) 0.383 0.996 (0.212–4.677) 0.996

cfNRIevents 0.333 (-0.283–0.949) 0.289 -0.111 (-0.760–0.538) 0.737 -1.000 (-1.000– -1.000) 0.317 0.556 (0.012–1.099) 0.045

cfNRInonevents -0.209 (-0.410–-0.008) 0.042 0.055 (-0.150–0.260) 0.600 0.253 (0.054–0.452) 0.013 0.187 (-0.015–0.389) 0.070

cfNRI 0.125 (-0.523–0.773) 0.706 -0.056 (-0.737–0.625) 0.872 -0.747 (-0.956– -0.549) <0.001 0.742 (0.163–1.322) 0.012

IDIevents -0.008 (-0.053–0.036) 0.710 -0.025 (-0.071–0.021) 0.286 -0.030 (-0.049– -0.010) 0.003 0.009 (-0.049–0.067) 0.766

IDInonevents 0.000 (-0.007–0.007) 0.962 0.004 (-0.004–0.013) 0.284 0.003 (-0.001–0.006) 0.135 0.003 (-0.015–0.020) 0.779

IDI -0.009 (-0.053–0.036) 0.708 -0.021 (-0.068–0.026) 0.387 -0.027 (-0.047– -0.007) 0.007 0.011 (-0.049–0.072) 0.715

AUCdifference -0.016 (-0.061–0.029) 0.488 0.001 (-0.016–0.018) 0.889 -0.031 (-0.049– -0.012) 0.001 0.016 (-0.043–0.074) 0.595

Goodness of fit for reference models: MAKE: Hosmer-Lemeshow P =0.864, -2 Log likelihood 51.33, Nagelkerke R2 0.195, AUC 0.84; AKI: Hosmer-Leme-
show P =0.968, -2 Log likelihood 45.28, Nagelkerke R2 0.311, AUC 0.79.
Abbreviations: AKI, acute kidney injury; MAKE, major adverse kidney events; AUC, area under the curve; CI, confidence interval; cfNRI, category-free net re-
classification improvement; Exp(B), Logit coefficient expressed as odds ratio for one performance unit; NGAL, neutrophil gelatinase-associated lipocalin; IDI, 
integrated discrimination improvement.
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to the Cleveland Score to predict MAKE and AKI after cardiac 

surgery [3]. We found that urinary NGAL, interleukin-6, and 

their 1/hepcidin-25-ratios are independent predictors that im-

prove cfNRI-based MAKE- and AKI-prediction when added to 

the Cleveland Score. Notably, biomarker-related improvement 

was particularly dependent on correctly reclassifying patients 

without the event of interest. 

Several statistical proposals have been made to assess the ad-

ditional benefit of predictive biomarkers. Comparative metrics 

(AUC, cfNRI, IDI) are differently sensitive to detecting small im-

provements. Specifically, we found that high cfNRInonevent values 

indicate the ability of a biomarker to correctly decrease risk esti-

mates for non-events. Thus, they are useful for ruling out adverse 

kidney events [23]. In contrast, IDI and cfNRIevent are presumably 

confounded by low event numbers for MAKE and AKI [24].

As no single kidney biomarker will meet every requirement re-

garding the underlying pathophysiological mechanisms of AKI, 

we assessed the predictive performance of several urinary bio-

markers representing different direct or indirect components of 

tubular stress or damage [13, 25] or potential renal protective 

mechanisms [15, 16]. We found increased postoperative uri-

nary hepcidin-25 concentrations in non-AKI patients, whereas 

the concentrations remained low in patients with subsequent 

AKI, in line with previous studies [15, 16, 26]. We hypothesize 

that the improved predictive ability of NGAL and interleukin-6 

expressed as 1/hepcidin-25 ratio vs NGAL and interleukin-6 

alone may be explained by the role of hepcidin-25 in the me-

tabolism of labile-iron compounds in the presence and absence 

of AKI [15, 26-28]. During cardiac surgery, unbound labile iron-

related injury maintained by oxido-inflammatory stress may be 

of specific pathophysiological importance [7]. The involvement 

and contribution of interleukin-6 to inflammatory response-

pathways have also been implicated in the pathogenesis of 

ischemic AKI [29]. We believe that interleukin-6, a pro-inflam-

matory cytokine detected in urine, in particular, may serve as an 

indicator of tubular oxido-inflammation in cardiac surgery asso-

ciated kidney injury. We were also able to extend previous find-

ings on midkine as a potentially valuable predictor of MAKE and 

Fig. 4. Risk assessment plots showing the changes in model performance. Compared with AUC graphs, risk assessment plots illustrate infor-
mation for events and non-events separately, representing the preferences and drawbacks of the reclassified risk models (●nonevents, ■events, sol-
id lines) calculated by the addition of urinary biomarker concentrations (NGAL, interleukin-6, NGAL/hepcidin-25, interleukin-6/hepcidin-25) 
to the reference model (○nonevents, □events, dashed lines). □■ represent model sensitivity (Y-axis) versus the calculated risk (X-axis) for those with 
the event. ○● represent 1-specificity (Y-axis) versus the calculated risk (X-axis) for those without an event (endpoints MAKE, AKI).
Abbreviations: AUC, area under the ROC curve; MAKE, major adverse kidney events; AKI, acute kidney injury; NGAL, neutrophil gelatinase-associated lipo-
calin; IL-6, interleukin-6. 
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AKI [14]. Finally, the weak discriminatory ability of alpha-1 mi-

croglobulin for MAKE and AKI after cardiac surgery may be re-

lated to other predominant pathogenic tubular stress factors be-

ing effective in cardiac surgery compared with critically ill pa-

tients for whom alpha-1 microglobulin was previously found to 

be of value [12].

Perioperative risk assessment provides an opportunity for 

early diagnosis of adverse kidney events and early implementa-

tion of interventional strategies [30, 31]. Our finding regarding 

improved biomarker risk assessment after cardiac surgery car-

ries the potential of timely implementation of AKI care bundles, 

triggering diagnostic and therapeutic modifications [32], which 

are associated with favorable outcomes [30]. Importantly, given 

the pronounced improvement in non-event prediction, our find-

ings may facilitate withholding unnecessary diagnostic or thera-

peutic measures. Considering the performance and immediate 

availability of the assessed biomarkers in clinical practice, NGAL 

and interleukin-6, both measurable using clinical laboratory 

platforms, appear to be the most promising candidates for im-

plementation in kidney risk assessment at the bedside. Finally, 

our findings on alpha-1 microglobulin are in line with previous 

findings and do not support further investigation of this bio-

marker in the cardiac surgery setting [33]. 

Our study has several strengths and limitations. We investi-

gated typical patients at risk of adverse outcome in a relatively 

homogenous and well-defined patient cohort after cardiac sur-

gery. Well-calibrated statistical and clinical risk assessment 

models enabled us to identify specific predictive patterns such 

as biomarkers improving prediction of non-events. In patient 

cohorts with only a few MAKE or AKI events, large sample sizes 

are necessary to derive reliable performance estimates, particu-

larly for the estimation of classification errors. Thus, the limited 

sample size of this study is clearly a limitation. However, the ap-

parent improvement in the accuracy of prediction models with 

small sample sizes may be potentially confounded by model 

overfitting. Hence, we utilized cross-validated estimates. As ex-

pected, model accuracy (AUC) was decreased, and the cross-

validated measures were more conservative in detecting model 

improvement [34]. Weaker performance in reclassifying 

“events” may also reflect the limitations of the markers them-

selves or may be, at least partly, explained by “imperfect” clini-

cal endpoints, which commonly depend on changes in serum 

creatinine, a poor reference standard [35]. Finally, the present 

study does not preclude the conclusion that no other kidney 

biomarkers may improve AKI risk prediction, as previously 

shown [36]. 

Early recognition of AKI or subclinical AKI using NGAL or in-

terleukin-6 analysis at the bedside may help guide early risk-

stratified interventions, such as implementation of the Kidney 

Disease Improving Global Outcomes (KDIGO) care bundles, and 

may also prevent unnecessary care for event-free patients [24, 

30]. Future studies should clarify whether such clinical kidney 

risk assessment and interventions guided by readily available 

biomarkers can improve outcomes.

In summary, biomarkers from multiple, biologically linked 

pathways related to iron metabolism and/or inflammation are 

associated with the risk of adverse kidney related outcomes [37, 

38]. In this pilot study, we found urinary NGAL and interleukin-6 

to be the most promising candidates for further clinical imple-

mentation research. The combination of biomarkers with hepci-

din-25 may further improve diagnostic discrimination. Further 

research into the reno-protective abilities of hepcidin-25 should 

be conducted.
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