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Introduction

Despite advances in medical care, the preterm birth (PTB) 
rate has been steady globally at up to 10.0% for the past 
several decades [1]. The most common phenotype (60%) of 
PTB occurs spontaneously with 30–40% being preceded by 
preterm premature rupture of the fetal membranes (pPROM) 
[1]. Current interventions to reduce the risk of preterm labor 
have been designed primarily based on our understanding of 
signaling at the maternal myometrium, specifically in terms 
of minimizing contractions to prolong gestation. A higher 
rate of spontaneous PTB globally warrants a better under-
standing of these signals and their mechanisms that initiate 
normal term pregnancies, which can provide insights into 
the pathological activation of signals associated with preterm 
parturition [2].

PTB and pPROM are associated with intra-amniotic inflam-
mation [3-8]. Sterile inflammation, in the absence of infec-
tion, is increasingly being reported in PTB and pPROM and 
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is hypothesized to be a trigger for term birth as well [9,10]; 
however, etiologies contributing to sterile inflammation in 
adverse pregnancies are difficult to ascertain. This is partly 
because inflammatory pathways and biomarkers overlap, 
irrespective of the etiology [11]. Both infectious and non-
infectious risk factors during pregnancy can cause oxidative 
stress (OS) and OS-mediated damage to cells and cellular 
organelles, which can lead to inflammation [12,13]. Similarly, 
in normal term pregnancies, OS-induced cellular damage 
and sterile inflammation can contribute to labor initiation 
pathways. Increased inflammation, irrespective of term or 
preterm status, is associated with decidual activation [14,15], 
transition of the quiescent myometrium to an active contrac-
tile state [16,17], and cervical ripening [2,18]. However, the 
mechanisms that generate sterile inflammatory mediators 
that can affect normal term parturition have still not been 
elucidated. 

Although signals initiating parturition may arise from both 
fetal and maternal uterine tissues; a precise understanding of 
the true initiator is yet to emerge. It is unclear on who (mother 
vs. fetus) determines the timing of the inflammatory activa-
tion on maternal uterine tissues. One of the theories is based 
on fetal organ maturation and endocrine signaling [19-23]. 
Mature fetal organs release various biochemical mediators 
into the uterine environment [24]. These biochemicals are 
pro-inflammatory and can increase the overall inflammatory 
load in feto-maternal uterine tissues to induce labor. A classic 
example was provided by Mendelson et al. [25], who report-
ed the role of surfactant protein-A and platelet-activating 
factor (PAF) expression, which increased in the developing 
fetal lung. These proteins can increase myometrial inflam-
mation and labor. Endocrine signals are also well-reported 
time determinants of parturition [26-30]. Tan et al. [17] and 
Mesiano et al. [31] described the functional progesterone 
withdrawal theory based on the changes in progesterone 
receptor function in the myometrium. The quiescent state 
of the myometrium is maintained during pregnancy via 
progesterone-progesterone receptor (PR) B function. At term, 
this state is compromised and the active labor state is gener-
ated when PRA phosphorylation and progesterone binding 
contribute to a pro-inflammatory milieu [17,32]. Similarly, 
cervical remodeling and ripening is also impacted by changes 
in the endocrine and inflammatory mediators in response 
to fetal maturation signals [18]. In summary, parturition is a 
timed event where the fetus signals mature through various 

biochemical and endocrine mediators. These biochemical 
mediators include, but are not limited to, platelet activa-
tion factor [33], endothelins [34-36], transforming growth 
factor [37], and platelet-derived growth factor, all of which 
enhance inflammation in various feto-maternal tissues. Thus, 
inflammation disrupts homeostasis of various uterine func-
tions, resulting in labor-associated changes. 

The functional impact on maternal uterine tissues imposed 
by various biochemical signals and the signal-generated path-
ways leading to inflammation, which transition a quiescent 
state to an active labor state, has been well-reported [38-43]. 
However, very few studies have examined the contributions 
of fetal tissues, specifically fetal membranes (amniochorion), 
in this process [44-56]. Fetal membranes line the intrauterine 
cavity where they are enriched by the amniotic fluid com-
posed of various biochemicals produced by the maturing 
fetal organs. Disruption of the functional and mechanical 
integrity of the fetal membrane, chorioamnionitis (infiltration 
of leukocytes), or mechanical derangement in response to 
various endogenous and/or exogenous factors are anteced-
ent to both term and preterm parturition [48,57-60]. Since 
fetal membranes act as a barrier between the fetus and uter-
ine tissues, they play a major role in maintaining pregnancy 
by protecting the fetus. Fetal membranes are hypothesized 
to promote parturition as they are exposed to various bio-
chemical and physiological stressors at term. These stressors 
can disrupt fetal membrane homeostasis, leading to their 
dysfunction and/or rupture. A stressed and inflamed fetal 
membrane can signal term parturition. Our laboratory has 
recently elucidated the mechanisms by which OS inducers 
contribute to parturition by forcing fetal membranes to un-
dergo senescence, a mechanism of aging [61]. The aging of 
a cell is a non-reversible process and is often associated with 
sterile inflammation, referred to as the senescence-associated 
secretory phenotype (SASP) [62]. The rest of this review will 
be dedicated to summarizing the recent developments in 
fetal membrane senescence research and how membrane 
senescence may signal term and preterm parturition.

Fetal membrane

1. Fetal membrane development
Fetal membranes consist of 2 major cell layers: a single cu-
boidal amnion epithelial layer and the chorion trophoblast 
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layer. Both of these layers are connected to a collagen-rich 
extracellular matrix via type IV collagen-rich basement mem-
branes. Amnion and chorion mesenchymal cells can be seen 
dispersed in this extracellular matrix. The development of the 
amnion and chorion begins with embryogenesis, although 
they do not participate directly in the formation of the em-
bryo or fetus. Like the fetus, early growth of the amnion and 
chorion layers is rapid and independent of each other. The 
formation of the amniochorion as a combined structural unit 
is completed between the 13th and 15th week of gestation. 
The growth and development of the amniochorion correlate 
with fetal growth, with a longevity period of 40 weeks (term 
gestation period).

2. Fetal membrane senescence
Fetal membrane cells have stem cell-like properties, as they 
are capable of growth, DNA replication, and transition at 
term, as well as exhibiting stem cell transcription factors [63]. 
Recent work using primary amnion epithelial cells showed 
that these cells can proliferate, migrate, express stem cell 
markers, and transition into other cell types [63]. These 
properties are essential for fetal membrane remodeling and 
to maintain membrane integrity, as membranes during preg-
nancy are constantly subjected to shear stress and stretching 
because of the fluid and fetus, respectively. During growth, 
membrane cells are constantly shed and gaps referred to as 
microfractures are often created [64]. Stem cell-like proper-
ties, proliferation, and cell transitions help to rebuild any 
structural compromises created by cell shedding [63]. This 
process also generates localized inflammation, which is re-
quired for membrane matrix remodeling. Uterine cavity OS 
levels change during gestation [65-67]; however, redox bal-
ance during pregnancy sustains this remodeling process as 
well as other reproductive functions [68]. Interestingly, the 
process is stalled as the membrane reaches the end of its lon-
gevity period at term and demonstrates structural, function-
al, and biomolecular changes that are characteristic of aging 
[61]. Two key function-based definitions proposed by Masoro 
[69] and Finch [70] may aid in understanding the biological 
aging process of fetal membranes: 1) Fetal membranes are 
expected to deteriorate during gestation once its maturation 
is completed around the 12th week of pregnancy, and will 
be vulnerable to subtle changes in the intrauterine environ-
ment, decreasing survival ability; 2) Senescence is a mecha-
nism associated with the deterioration process of the mem-

branes, which alters its function and decreases vitality [71]. 

3. Mechanism of fetal membrane senescence
In normal pregnancies, the methodical progression of senes-
cence is under physiological control and is an inevitable pro-
cess [61]. Senescence in fetal membranes is a telomere-de-
pendent process, where telomere (cap structures protecting 
chromosomal edges and biological markers of aging) lengths 
are progressively shortened as gestation progresses [71-73]. 
The “Hayflick Phenomenon” explains this process by demon-
strating the halt in cell division after a certain number of divi-
sions [74,75]. Telomere length reduction in fetal membranes 
inversely correlates with fetal growth and reduction peaks at 
term when the fetus is mature [76,77]. One of the key accel-
erators of telomere length reduction is OS, as the guanine-
rich telomere region is highly susceptible to OS [78,79]. As 
mentioned previously, redox balance maintains the structural 
remodeling of the membranes during gestation. However, 
term pregnancy is characterized by increased intrauterine OS 
due to the following reasons: 1) increase in the metabolic 
demands of the fetus [80,81]; 2) no change in the supplies 
of the maternal substrate to meet fetal metabolic demands 
[82,83]; 3) no change in the antioxidant status in both the 
fetal and maternal uterine tissues at term [53,84]; and 4) 
increase in the reactive oxygen species levels in the amniotic 
fluid at term when compared to other periods of gestation 
[85-88]. OS increase accelerates an already progressing ag-
ing process in fetal membranes through the activation of the 
p38 mitogen-activated protein kinase (p38MAPK) pathway, 
a stress-associated signaling pathway. OS specifically causes 
damage to various cell components, and this damage in fetal 
membranes can result in the activation of p38MAPK to cause 
senescence [12,61,71,89-93]. This mechanism of fetal mem-
brane aging was confirmed when the antioxidant, N-acetyl 
cysteine, and a p38MAPK inhibitor reversed OS-induced 
and p38MAPK-mediated senescence and the senescence-
associated secretory phenotype (SASP) in our in vitro and in 
situ animal models [13,90,92-94].

4. Consequence of fetal membrane aging
Fetal membranes attain an irreversible senescent phenotype 
due to increased OS prior to the initiation of labor at term. 
OS-p38MAPK-mediated senescence also diminishes the pro-
liferative and transitional capacities of fetal membrane cells, 
thereby losing their functional and mechanical properties 
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[13,55,63,93,95]. This deterioration in fetal membrane func-
tion at term is a natural and physiological indicator of fetal 
membrane longevity. As mentioned previously, the dysfunc-
tional status of fetal membranes coincides with fetal organ 
maturation, thereby indicating fetal readiness for delivery. 
Senescence of the fetal membrane increases SASP, a unique 
inflammatory signature [61]. Therefore, senescence of fetal 
membranes can be detrimental to the existence of pregnan-
cy as the inflammatory signals (SASP) from senescent fetal 
membranes are uterotonins and could potentially trigger par-
turition [61]. Besides SASP, senescence-associated cellular in-
jury increases damage-associated molecular patterns (DAMPs; 
which consist of high mobility group box 1 [HMGB1], uric 
acid, S100 proteins [a family of 25 members], interleukin 
[IL]-33, heat-shock protein 70, and telomere fragments) in 
cell-free fetal DNA (cffDNA) from term membranes. DAMPs 
from senescent fetal membranes act as signals arising from 
the maturing fetus and generate inflammation in other in-
trauterine compartments, readying them for labor. We have 
also reported how DAMPs may exaggerate an ongoing in-
flammatory onslaught on fetal membrane and other tissues. 
A description of their functional contributions in terms of 
increasing overall inflammation is provided below.

HMGB1 exists predominantly as a nuclear 25 kDa, non-
histone chromatin-associated protein that binds double-
stranded DNA and stabilizes nucleosomes during DNA repair 
and recombination [96,97]. However, the acetylation of 
lysine residues translocates HMGB1 to the cytoplasm, where 
it functions as a pro-inflammatory cytokine [98,99]. HMGB1 
is known to be expressed in the human endometrium [100], 
placenta [101,102], decidua [101,103], cervix [104], fetal 
membrane cells [105,106], and immune cells, and has been 
reported in chorioamnionitis cases [105,107,108]. Higher 
HMGB1 concentrations in the amniotic fluid of laboring (term 
and preterm) vs. non-laboring women suggest that it has a 
role in parturition [9]. An increase in HMGB1 indicates cel-
lular damage, suggesting that it can be a critical mediator in 
both infectious and sterile inflammatory processes, as seen 
in both preterm and term labors. Buhimschi’s lab showed 
the impact of HMGB1 in animal inflammation models and 
documented that RAGE-dependent HMGB1 induced the 
activation of fetal inflammation [109]. In our own studies us-
ing fetal membrane cells, we were able to demonstrate that 
HMGB1 secretion was higher in OS-induced fetal membrane 
cells [110]. HMGB1 utilizes a positive feedback loop to en-

hance fetal cell senescence, tissue injury, and inflammatory 
cytokine production, which are capable of functioning as 
pro-parturition molecules. The enhancement of senescence 
by HMGB1 in these cells is mediated via Toll-like receptors 
(TLRs) and by increasing p38MAPK activation [110]. Interest-
ingly, antioxidant, N-acetyl cysteine, and p38MAPK inhibitor, 
SB203580, treatments reduced the pro-senescent and pro-
inflammatory effect of HMGB1 on fetal membrane cells [110]. 
This mechanism is similar to the OS effect seen on fetal 
membranes, suggesting that HMGB1 released from an OS-
damaged cell can enhance senescence and inflammation in a 
feed-forward loop [92].

Dr. Mark Phillippe’s group [111,112] has suggested that 
cffDNA in maternal circulation may activate human partu-
rition. In his report, Dr. Phillippe [111]mentioned that an 
increase in cffDNA, which is released during apoptosis in 
the placenta and fetal membranes at term, has the ability to 
stimulate TLR9, leading to the increased release of cytokines 
and chemokines. One important component of cffDNA is 
fragmented telomeres. Telomere length in the fetal mem-
branes decreases progressively throughout gestation with 
the shortest telomeres seen at term, which is consistent with 
in utero aging [72]. We also found a significant labor-asso-
ciated increase in the abundance of cell-free fetal telomere 
fragments (cffTFs) in the amniotic fluid [73,113]. Additionally, 
cffTFs are also reported to have similar functional effects as 
HMGB1. To determine the functional consequences of in-
creased cffTFs, in vitro and in situ animal model studies were 
conducted. Similar to the HMGB1 reports, cffTFs produced 
a positive feedback loop to enhance fetal cell senescence, 
tissue injury, and inflammatory cytokine production. Senes-
cence induced by cffTFs were also associated with p38MAPK 
activation. To further determine the impact of cffTFs in par-
turition, we injected cffTFs into mouse models of pregnancy, 
thereby resulting in mouse fetal membrane p38MAPK acti-
vation, senescence, and inflammatory cytokine production 
[94,113].

Although our studies were restricted to HMGB1 and cffTFs, 
other reports showed an association between other DAMPs 
like uric acid [102,114], S100 proteins [109,115], IL-33 [116], 
and HSP70 [117] during pregnancy complications [118]. In 
summary, parturition signaling can be viewed from the fetal 
membrane perspective, where a novel paracrine signaling 
mechanism mediated by fetal tissue stress (i.e., physiologi-
cal or pathophysiological senescence and/or OS) generates 
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sterile inflammation within the maternal-fetal interface (fetal 
membranes, decidua, and myometrium). Term labor can be 
triggered by factors collectively referred to as DAMPs, which 
are produced from senescent fetal membrane cells.

Can the mechanism of senescence 
explain the pathobiology of preterm 
birth and preterm premature rupture of 
the fetal membranes?

The ultimate goal of all of these studies is to identify the 
initiators and mechanistic effectors of PTB and pPROM. Hav-
ing determined that fetal membrane senescence may be 
one of the mechanisms triggering parturition at term, we 
examined similar pathways in PTB and pPROM. For this, fetal 
membranes and amniotic fluid samples were collected from 
women with PTB and pPROM. Molecular, biochemical, and 
histological markers were used to document differences in 
OS and antioxidant enzyme status, DNA damage, second-
ary signaling, MAPK activation, and senescence activation 
between the membranes in both groups. OS was higher and 
antioxidant enzymes were lower in pPROM when compared 
to PTB. PTB membranes had minimal OS and DNA damage, 
no p38MAPK activation, and minimal signs of senescence 
[119]. Conversely, pPROM had higher numbers of cells with 
OS, DNA damage, p38MAPK activation, and signs of senes-
cence [119]. Telomere lengths were also substantially shorter 
in pPROM membranes than in PTB membranes and fetal cord 
blood samples supported the hypothesis that pPROM may 
have a pathology due to premature aging of membranes [72]. 
Histologically and biochemically, pPROM membranes resem-
bled normal term-delivered membranes, whereas PTB mem-
branes were distinctly different. Both pPROM and normal 
term birth are associated with fetal membrane senescence, 
inflammation, and dysfunction. Hence, pPROM is a disease 
of the fetal membrane where the premature activation of se-
nescence predisposes them to rupture [120]. We concluded 
that PTB and pPROM arose from distinct pathophysiological 
pathways. OS and OS-induced cellular damage are likely de-
terminants of signaling pathways and phenotypic outcomes. 
This conclusion does not rule out OS in PTB, as a subset of 
women with exposure to OS may still develop this pathway, 
ultimately leading to labor; however, it is more dominant in 
pPROM. We also postulate that pPROM is a disease of the 

fetal membrane and senescence, with senescence leading to 
dysfunctions that act as the primary mediators of this mecha-
nism [120].

How does fetal membrane senescence 
signal parturition?

As detailed previously, in vitro and in situ animal models dem-
onstrated the consequences of fetal membrane senescence. 
Senescence and sterile inflammation mediated by SASPs and 
DAMPs are uterotonins, which are capable of inducing labor. 
However, the question remains whether this inflammation 
and cellular damage is restricted to the membranes or if 
membrane-derived inflammatory mediators are propagated 
to other feto-maternal uterine tissues to trigger inflammatory 
changes. Although the diffusion of these mediators is pos-
sible, it is unlikely that molecules like HMGB1 can traverse 
through the feto-maternal tissue layers and still be function-
ally viable at distant sites [121]. Our group has hypothesized 
that signal propagation between feto-maternal tissues can 
be effectively achieved via extracellular vesicles, specifically 
exosomes, which are bioactive, spherical, cell-derived vesicles 
(30–150 nm in size) that are secreted during the process of 
exocytosis. Exosomes contain molecular constituents of their 
cell of origin, including proteins and RNA that reflect the 
physiological state of the cell source [122-125]. In addition 
to common membrane and cytosolic molecules, exosomes 
harbor unique cell-specific subsets of proteins. Exosomes 
are released from the cell when multi-vesicular bodies fuse 
with the plasma membrane. They contain high concentra-
tions of cholesterol and detergent-resistant lipid membranes, 
which make them extremely stable and efficient carriers of 
molecules across tissue layers [126-128]. Exosomes mostly 
act as transporters of paracrine signals between tissues, but 
can regulate intracellular pathways by sequestering signaling 
molecules from the cytoplasm, thereby reducing their bio-
availability [127,128].

Amniochorion cell-derived exosomes 
carry inflammatory mediators

To test whether fetal membrane cells produced exosomes, 
we isolated and characterized primary amnion cell-derived 
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exosomes. We also treated amnion cells with OS-inducing 
agents to mimic the conditions experienced at term. Am-
nion cells were previously shown to produce exosomes that 
exhibited classic characteristics; however, OS treatment 
changed their cargo contents [129]. Inflammation was also 
witnessed in exosomes derived from cells grown under nor-
mal conditions and in cells exposed to OS [129]. The nature 
of inflammatory mediators differed between normal and OS-
treated exosomes. Bioinformatic analysis of the proteomic 
contents in exosomes derived from cells grown under nor-
mal cell culture conditions exhibited nuclear factor (NF)-κB 
signaling pathways, whereas transforming growth factor β 
(TGFβ)-related signaling was dominant in OS-exposed cell-
derived exosomes. Although both represent inflammation, 
the underlying cellular physiology contributing to the distinct 
inflammatory mediators in the exosomes reflects the specific 
exposure and the OS-associated state of cells [129]. TGFβ has 
been previously reported to increase with term labor and is 
an activator of p38MAPK, a senescent inducer in fetal mem-
branes [95]. Besides these inflammatory pathways, senescent 
amnion cell-derived exosomes (from amnion cells grown 
under OS conditions) contain HMGB1 and cffTFs. These exo-
somes also carry both genomic and mitochondrial DNA [130]. 
Although our published reports focus on amnion cell-derived 
exosomes, ongoing work in our laboratory demonstrates 
that amnion mesenchymal cells and chorion mesenchymal 
and trophoblast cells also generate exosomes with distinct 
cargo contents in response to various stimulants.

Trafficking of exosomes carrying 
fetal signals between feto-maternal 
compartments

Propagation of senescent fetal cell-derived signals via exo-
somes and the trafficking of exosomes from fetal to mater-
nal compartments was previously determined using animal 
models [131]. In this study, pregnant CD-1 mice were intra-
amniotically injected on gestational days 16 and 17 with exo-
somes isolated from primary human amnion epithelial cells 
fluorescently labeled with the lipophilic dye, 1,1-dioctadecyl-
3,3,3,3-tetramethylindotricarbocyanine iodide (DiR). In vivo 
imaging of the mice showed fluorescence in the uterus on 
the exosome-injected side, whereas the uterine tissues on 
the non-injected side and in saline and dye alone-injected 

animals remained negative. Histological analysis of the pla-
centa showed exosome migration from the fetal to the ma-
ternal side of the placenta. Fluorescence released from the 
exosomes was seen in maternal blood samples and in the 
maternal uterus and kidneys, demonstrating that exosomal 
cargo can be carried via the systemic route from the fetus to 
the maternal side of the uterine tissues during pregnancy. 
This supports our hypothesis that fetal signals can be deliv-
ered via exosomes to the maternal side. A similar form of 
exosomal trafficking was also reported by other study groups 
[132].

Senescent fetal membrane-derived 
exosomes cause functional changes in 
maternal uterine cells

After documenting fetal exosome traffic to the maternal 
side, we tested the hypothesis that fetal exosomes could 
produce inflammatory changes in maternal uterine cells. 
The pro-inflammatory effect of fetal exosomes on maternal 
cells will be considered as a signaling mechanism by the fetal 
membranes to initiate the labor process by enhancing the in-
flammatory load. To test this theory, primary amnion epithe-
lial cells were grown in normal cell cultures or exposed to OS, 
and myometrial and decidual cells were treated with various 
doses of exosomes derived from amnion cells. Treatment re-
sulted in the increased production of inflammatory mediators 
(IL-6, IL-8, and PGE2) and activation of NF-κB. This is sugges-
tive of fetal membrane cell-derived exosomes contributing to 
labor-associated inflammatory changes in maternal uterine 
cells [133]. Similar to our data, Holder et al. [134] showed 
that macrophage-derived exosomes caused the release of 
pro-inflammatory cytokines from the placenta. Another study 
suggested the ability of the placenta to respond to maternal 
inflammatory signals mediated by the interaction of maternal 
immune cell exosomes [134].

Recently, we tested the hypothesis that exosomes, as para-
crine signaling molecules, can cause parturition. For this, 
maternal plasma exosomes from CD-1 mice were isolated 
and characterized throughout gestation and the biological 
pathways associated with differentially-expressed cargo pro-
teins were determined. The results indicated that the shape 
and size of the exosomes remained constant throughout the 
gestational period; however, a progressive increase in the 
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quantity of the exosomes carrying inflammatory mediators 
was observed from embryonic day 5 (E5) to E19. Moreover, 
intraperitoneal injection of E18 exosomes (enriched in in-
flammatory mediators) into E15 mice caused them to un-
dergo PTB when compared to mice that were injected with 
E9 exosomes (minimal levels of inflammatory mediators) or 
normal saline. The injection of E18 exosomes produced in-
flammation in the cervix and uterus on the penultimate day 
of delivery. Thus, these results support the functional role of 
exosomes as paracrine signaling molecules in causing par-
turition. Notably, this study used total exosomes rather than 
fetal exosomes; therefore, it is not a true in situ replication of 
the reported in vitro data.

Studies have also reported about the role of exosomes in 
implantation [135,136], placental immunomodulation [137], 
and their biomarker potential in various pregnancy complica-
tions [135,138-143]. Abnormal quantity and cargo contents 
of exosomes may serve as biomarkers of various adverse 
pregnancy events. Thus, ongoing studies, both in our labo-
ratory and many other laboratories, are examining the bio-
marker potential of exosomes in predicting PTB [134].

Summary and conclusions

PTB pathways, biomarkers, and intervention strategies re-
main an enigma in the obstetric world [144]. Although mul-
tiple initiator and effector signals from both the fetus and 
mother have been proposed, the rate of PTB continues to 
rise. Thus, this suggests that our current knowledge is inad-
equate to reduce PTB risk. A better understanding of normal 
term birth and its pathways is needed to re-examine the pre-
mature activation of such pathways as triggers during pre-
term labor conditions. This manuscript provides an overview 
of a novel mechanism of parturition initiation signal based 
on well-reported data. The data summarize the progressive 
senescence of fetal membrane cells as term approaches. 
Senescent fetal cells generate inflammatory cargo-laden exo-
somes that move from the fetus to maternal uterine tissues 
in order to cause parturition by promoting inflammation. 
This can be considered a signal from the fetus, or specifically 
the fetal membrane, which indicates its longevity and dys-
functional status. The loss of fetal membrane integrity due 
to senescence and generation of inflammation (SASPs and 
DAMPs) can be considered to be one of the signals required 

to initiate parturition. The premature activation of membrane 
senescence in response to various pregnancy-associated 
risk factors can be attributed to a major subset of PTBs and 
pPROM. A better understanding of senescence activators 
and exosomal signaling may help us to sub-classify PTBs with 
such pathologies. Exosomes may also serve as biomarkers 
indicative of risk status.
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